
Chapter 4

Impact of Similarity Measures

I have had my results for a long time: but I do not yet

know how I am to arrive at them.

– Karl Friedrich Gauß1

In the last chapter, we explored the relationship-based approach to clus-

tering in several domains. The work was initially motivated by retail data and

extended naturally to other domains where high-dimensional representations

are prevalent, such as text documents and web-logs. A particularly interesting

application is clustering of text documents which enables unsupervised cate-

gorization and facilitates browsing and search. A critical step in adapting a

relationship-based clustering to a specific domain is the choice of similarity

measure. In this chapter, we investigate the impact of similarity measures on

clustering quality. We will first introduce similarities and algorithms for text

clustering, then develop a general comparative framework and, finally, conduct

case studies on a variety of text corpora.

1Quoted in A. Arber, The Mind and the Eye, 1954
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4.1 Motivation

Document clusters can provide a structure for organizing large bodies of text

for efficient browsing and searching. For example, recent advances in Internet

search engines (e.g., http://vivisimo.com/, http://metacrawler.com/) ex-

ploit document cluster analysis. For this purpose, a document is commonly

represented as a vector consisting of the suitably normalized frequency counts

of words or terms. Each document typically contains only a small percentage

of all the words ever used. If we consider each document as a multi-dimensional

vector and then try to cluster documents based on their word contents, the

problem differs from classic clustering scenarios in several ways: Document

data is high-dimensional2, characterized by a very sparse term-document ma-

trix with positive ordinal attribute values and a significant amount of outliers.

In such situations, one is truly faced with the ‘curse of dimensionality’ issue

[Fri94] since, even after feature reduction, one is left with hundreds of dimen-

sions per object.

In the previous chapter, we developed the relationship-clustering frame-

work to effectively side-step the ‘curse of dimensionality’. In the relationship-

based clustering process, key cluster analysis activities [JD88] can be associ-

ated with each step:

1. To obtain features X ∈ F from the raw objects, a suitable object rep-

resentation has to be found. We will not be concerned with representa-

tion in this chapter, since the significant amount of empirical studies on

document clustering in the 80s and earlier emphasized various ways of

2The dimension of a document in vector space representation is the size of the vocabulary,
often in the tens of thousands.
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representing / normalizing documents [Wil88, SB88, Sal89].

2. In the second step, a measure of proximity S ∈ S has to be defined

between objects. The choice of similarity or distance can have a profound

impact on clustering quality. In this chapter, we first compare similarity

measures analytically and then illustrate their semantics geometrically.

3. The third activity requires a suitable choice of clustering algorithm to

obtain cluster labels λ ∈ O. Agglomerative clustering approaches were

historically dominant as they compared favorably with flat partitional

approaches on small or medium sized collections [Wil88, Ras92]. But

lately, some new partitional methods have emerged (spherical k-means,

graph partitioning-based, etc.) that have attractive properties in terms

of both quality and scalability and can work with a wider range of simi-

larity measures. In addition, much larger document collections are being

generated.3 This warrants an updated comparative study on text clus-

tering, which is the motivation behind this chapter.

4. Finally, in the assessment of output one has to investigate the validity of

the results.4 In this chapter, we propose an experimental methodology

to compare high-dimensional clusterings based on mutual information

and we show how this is better than purity or entropy-based measures

[BGG+99, ZK01, SKK00]. Finally, we conduct a series of experiments

to evaluate the performance and cluster quality of four similarity mea-

sures (Euclidean, cosine, Pearson correlation, extended Jaccard) in com-

3IBM Patent Server has over 20 million patents. Lexis-Nexis contains over 1 billion
documents

4Often, data abstraction has to performed between clustering and final assessment [JD88].
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bination with five algorithms (random, self-organizing map, hypergraph

partitioning, generalized k-means, weighted graph partitioning).

Some very recent, notable comparative studies on document clustering

[SKK00, ZK01] also consider some of the newer issues. Our work is distin-

guished from these efforts mainly by its focus on the key role of the similarity

measures involved, emphasis on balancing, and the use of a normalized mutual

information-based evaluation that we believe has superior properties.

The basic notation is the same as introduced in the previous chapter

in section 3.2. In the next section, we introduce several similarity measures,

illustrate some of their properties, and show why we are interested in some

but not others. In section 4.3, the algorithms using these similarity measures

are discussed. Section 4.4 introduces a variety of cluster quality evaluation

methods including our proposed mutual information criterion. Finally, the

experiments and results are shown in section 4.5.

4.2 Similarity Measures for Document Clus-

tering

4.2.1 Conversion from a Distance Metric

The Minkowski distances Lp(xa,xb) =
(

∑d
i=1 |xi,a − xi,b|p

)1/p

are the stan-

dard metrics for geometrical problems. For p = 2 we obtain the Euclidean

distance. There are several possibilities for converting such a distance metric

(in [0, inf), with 0 closest) into a similarity measure (in [0, 1], with 1 closest) by

a monotonic decreasing function. For Euclidean space, we chose to relate dis-
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tances d and similarities s using s = e−d
2
. Consequently, we define Euclidean

[0,1]-normalized similarity as

s(E)(xa,xb) = e−‖xa−xb‖
2
2 (4.1)

which has important desirable properties (as we will see in the discussion)

that the more commonly adopted s(xa,xb) = 1/(1 + ‖xa − xb‖2) lacks. Other

distance functions can be used as well. The Mahalanobis distance normal-

izes the features using the covariance matrix. Due to the high-dimensional

nature of text data, covariance estimation is inaccurate and often computa-

tionally intractable, and normalization is done if need to be, at the document

representation stage itself, typically by applying TF-IDF.

4.2.2 Cosine Measure

A popular measure of similarity for text (which normalizes the features by the

covariance matrix) clustering is the cosine of the angle between two vectors.

The cosine measure is given by

s(C)(xa,xb) =
x†axb

‖xa‖2 · ‖xb‖2
(4.2)

and captures a scale invariant understanding of similarity. An even stronger

property is that the cosine similarity does not depend on the length:

s(C)(αxa,xb) = s(C)(xa,xb) for α > 0. This allows documents with the same

composition, but different totals to be treated identically which makes this the

most popular measure for text documents. Also, due to this property, samples

can be normalized to the unit sphere for more efficient processing [DM01].
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4.2.3 Pearson Correlation

In collaborative filtering, correlation is often used to predict a feature from a

highly similar mentor group of objects whose features are known. The [0,1]-

normalized Pearson correlation is defined as

s(P)(xa,xb) =
1

2

(

(xa − x̄a)
†(xb − x̄b)

‖xa − x̄a‖2 · ‖xb − x̄b‖2
+ 1

)

, (4.3)

where x̄ denotes the average feature value of x over all dimensions. Note that

this definition of Pearson correlation tends to give a full matrix. Other impor-

tant correlations have been proposed, such as Spearman correlation [Spe06]

which works well on rank orders.

4.2.4 Extended Jaccard Similarity

The binary Jaccard coefficient measures the degree of overlap between two sets

and is computed as the ratio of the number of shared attributes (words) of xa

AND xb to the number possessed by xa OR xb. For example, given two sets’

binary indicator vectors xa = (0, 1, 1, 0)† and xb = (1, 1, 0, 0)†, the cardinality

of their intersect is 1 and the cardinality of their union is 3, rendering their

Jaccard coefficient 1/3. The binary Jaccard coefficient is often used in retail

market-basket applications. In chapter 3, we extended the binary definition

of Jaccard coefficient to continuous or discrete non-negative features. The

extended Jaccard is computed as

s(J)(xa,xb) =
x†axb

‖xa‖22 + ‖xb‖22 − x†axb
, (4.4)

which is equivalent to the binary version when the feature vector entries are

binary. Extended Jaccard similarity [SG00c] retains the sparsity property of
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the cosine while allowing discrimination of collinear vectors as we will show

in the following subsection. Another similarity measure highly related to the

extended Jaccard is the Dice coefficient (s(D)(xa,xb) =
2x†axb

‖xa‖22+‖xb‖
2
2
). The Dice

coefficient can be obtained from the extended Jaccard coefficient by adding

x†axb to both the numerator and denominator. It is omitted here since it

behaves very similar to the extended Jaccard coefficient.

4.2.5 Other (Dis-)Similarity Measures

Many other (dis-)similarity measures, such as mutual neighbor or edit distance,

are possible [JMF99]. In fact, the ugly duckling theorem states [Wat69] the

somewhat ‘unintuitive’ fact that there is no way to distinguish between two

different classes of objects, when they are compared over all possible features.

As a consequence, any two arbitrary objects are equally similar unless we

use domain knowledge. The similarity measures discussed above are the ones

deemed pertinent to text documents [Sal89, FBY92] in previous studies.

4.2.6 Discussion

Clearly, if clusters are to be meaningful, the similarity measure should be

invariant to transformations natural to the problem domain. Also, normaliza-

tion may strongly affect clustering in a positive or negative way. The features

have to be chosen carefully to be on comparable scales and similarity has to

reflect the underlying semantics for the given task.

Euclidean similarity is translation invariant but scale sensitive while

cosine is translation sensitive but scale invariant. The extended Jaccard has

aspects of both properties as illustrated in figure 4.1. Iso-similarity lines at
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s = 0.25, 0.5 and 0.75 for points x1 = (3, 1)† and x2 = (1, 2)† are shown for

Euclidean, cosine, and the extended Jaccard. For cosine similarity only the 4

(out of 12) lines that are in the positive quadrant are plotted: The two lines in

the lower right part are one of two lines from x1 at 0.5 and 0.75. The two lines

in the upper left are for x2 at s = 0.5 and 0.75. The dashed line marks the

locus of equal similarity to x1 and x2 which always passes through the origin

for cosine and extended Jaccard similarity.

Using Euclidean similarity s(E), iso-similarities are concentric hyper-

spheres around the considered point. Due to the finite range of similarity,

the radius decreases hyperbolically as s(E) increases linearly. The radius does

not depend on the center-point. The only location with similarity of 1 is the

considered point itself and all finite locations have a similarity greater than

0. This last property tends to generate non-sparse similarity matrices. Using

the cosine measure s(C) renders the iso-similarities to be hypercones all having

their apex at the origin and axis aligned with the considered point. Loca-

tions with similarity 1 are on the 1-dimensional sub-space defined by this axis.

The locus of points with similarity 0 is the hyperplane through the origin and

perpendicular to this axis. For the extended Jaccard similarity s(J), the iso-

similarities are non-concentric hyperspheres. The only location with similarity

1 is the point itself. The hypersphere radius increases with the the distance

of the considered point from the origin so that longer vectors turn out to be

more tolerant in terms of similarity than smaller vectors. Sphere radius also

increases with similarity and as s(J) approaches 0 the radius becomes infinite

rendering the sphere to the same hyperplane as obtained for cosine similarity.

Thus, for s(J) → 0, extended Jaccard behaves like the cosine measure, and for

s(J) → 1, it behaves like the Euclidean distance.
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Figure 4.1: Properties of (a) Euclidean-based, (b) cosine, and (c) extended
Jaccard similarity measures illustrated in 2 dimensions. Two points (1, 2)† and
(3, 1)† are marked with ×s. For each point iso-similarity surfaces for s = 0.25,
0.5, and 0.75 are shown with solid lines. The surface that is equi-similar to
the two points is marked with a dashed line.

In traditional Euclidean k-means clustering the optimal cluster repre-

sentative c` minimizes the sum of squared error criterion, i.e.,

c` = argmin
z∈F

∑

xj∈C`

‖xj − z‖22. (4.5)

In the following, we show how this convex distance-based objective can be

translated and extended to similarity space. Consider the generalized objective

function f(C`, z) given a cluster C` and a representative z:

f(C`, z) =
∑

xj∈C`

d(xj, z)
2 =

∑

xj∈C`

‖xj − z‖22. (4.6)

We use the transformation from subsection 4.2.1 to express the objective in

terms of similarity rather than distance:

f(C`, z) =
∑

xj∈C`

− log(s(xj, z)) (4.7)
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Figure 4.2: More similarity properties shown on the 2-dimensional example of
figure 4.1. The goodness of a location as the common representative of the two
points is indicated with brightness. The best representative is marked with a
?. The extended Jaccard (c) adopts the middle ground between Euclidean (a)
and cosine-based similarity (b).

Finally, we simplify and transform the objective using a strictly monotonic

decreasing function: Instead of minimizing f(C`, z), we maximize f ′(C`, z) =

e−f(C`,z). Thus, in similarity space, the least squared error representative c` ∈
F for a cluster C` satisfies

c` = argmax
z∈F

∏

xj∈C`

s(xj, z). (4.8)

Using the concave evaluation function f ′, we can obtain optimal representa-

tives for non-Euclidean similarity spaces.

To illustrate the values of the evaluation function f ′({x1,x2}, z) are

used to shade the background in figure 4.2. The maximum likelihood repre-

sentative of x1 and x2 is marked with a ? in figure 4.2. For cosine similarity all

points on the equi-similarity are optimal representatives. In a maximum like-

lihood interpretation, we constructed the distance similarity transformation

such that p(z|c`) ∼ s(z, c`). Consequently, we can use the dual interpretations

98


