
c h a p t e r 5
S U P E R V I S E D L E A R N I N G

Organizing human knowledge into related areas is nearly as old as human knowl-
edge itself, as is evident in writings from many ancient civilizations. In modern
times, the task of organizing knowledge into systematic structures is studied by
ontologists and library scientists, resulting in such well-known structures as the
Dewey decimal system, the Library of Congress catalog, the AMS Mathematics
Subject Classification, and the U.S. Patent Office subject classification [11, 68].
Subject-based organization routinely permeates our personal lives as we organize
books, CDs, videos, and email.

The evolution of the Web has followed this familiar history. Around the same
time as ad hoc keyword search engines like AltaVista became popular, the Yahoo!
(www.yahoo.com) topic directory was launched. Since then, many other Web
catalogs have appeared. The Open Directory Project (dmoz.org) and About.com
are some of the best known at present.

Topic directories are some of the most popular sites on the Web. There is a
wealth of information in the manner in which humans have assigned structure
to an otherwise haphazard collection of Web pages. Earlier, directories were
used mainly for browsing, assisted with some simple search capability on the
few lines of description associated with resource links, not the contents of the
external pages themselves. Of late, well-known search portals such as Google
(www.google.com/) return with search responses the “topic path” of a response
(such as /Arts/Painting), if the response URL has been associated with one or
more topics in the Open Directory. Because the Open Directory is manually

125

126 C H A P T E R 5 Supervised Learning

maintained, it does not capture all URLs; therefore only a fraction of Google
responses are tagged with topics.1

Topic tagging improves the search experience in many ways. They are a great
warning for queries gone astray or ambiguous queries [48], and they are an indirect
means for finding similar documents. Whereas most “find-similar” utilities look
for pairwise syntactic similarities with the query document (see Section 3.3.1), a
topic-based search first maps the query document to a class (or a few classes), thus
greatly enhancing the vocabulary. Then it finds similar documents with respect
to this enhanced vocabulary. Topic tagging can also be used to assist hierarchical
visualization and browsing aids [101].

News tracking provides another example of the utility of detecting predefined
topics in text. Most online news sites provide tools to customize “front pages” as
per reader taste. URL- or keyword-based selection is often inadequate, for the
same reasons that make keyword-based searching imperfect. Systems have been
built to capture URL clicks and to use them to report similar pages. Further
applications to topic tagging can be found in organizing email [1] and bookmarks
by content [140, 141].

Assigning topic labels to documents is but one of many general uses of
supervised learning for text. Text classification has been used to narrow down
authors of anonymous documents by learning the writing style (stylometry), as
with the Federalist Papers written by Alexander Hamilton, John Jay, and James
Madison and published anonymously under the pen name Publius [156]. The
Flesch-Kincaid index is a hand-tuned “classifier” of sorts, combining the number
of syllables per word and number of words per sentence into an index of difficulty
of reading technical documents [78]. Yet another application is to classify the
purpose of hyperlinks. Documents are connected via hyperlinks and citations
for a variety of reasons, including elaboration, citation of supporting material,
critique, and so on. Machine learning can be used to guess the (main) purpose of
creating a hyperlink.

5.1 The Supervised Learning Scenario
Library scientists undergo extensive training to be able to tag publications with
correct and comprehensive topic labels. Can a computer program attain even a
fraction of their learning capability? This is an important question in view of the

1. It is possible that Google also uses automatic classification to some extent.

5.1 The Supervised Learning Scenario 127

Raw
statistics

Classifier

Statistics
collection

Model
validation

Cleaned
models

Class
labels

Test
documents

Held-out portion
for model validation

Model construction
portion

Training documents

F I G U R E 5 . 1 A typical supervised text-learning scenario.

growing volume of the Web, together with its vastly reduced editorial control and
resulting diversity. Learning to assign objects to classes given examples is called
classification or supervised learning, and is the subject of this chapter.

In supervised learning, the learner (also called the classifier) first receives
training data in which each item (document or Web page, in our setting) is
marked with a label or class from a discrete finite set. (Sometimes these labels
may be related through a taxonomic structure, such as a hierarchical topic catalog.
Except in Section 5.7, we will be largely concerned with “flat” sets of class labels.)
The learning algorithm is trained using this data. It is common to “hold out” part
of the labeled data to tune various parameters used in the classifier. Once the
classifier is trained, it is given unlabeled “test” data and has to guess the label.
Figure 5.1 illustrates the process at a high level.

Supervised learning has been intensively studied for several decades in AI,
machine learning, and pattern recognition, and of late in data warehousing and
mining. In those domains, the data is usually more “structured” than text or
hypertext. Structured data usually comes in relational tables with well-defined
data types for a moderate number of columns. For example, many data sets in
the well-known U.C. Irvine repository [20] have between 5 and 50 features.
Furthermore, the semantic connection between these columns and the class label
is often well understood, at least qualitatively; for example, smoking and cancer
risk, age and rash driving, or income and credit card fraud.

In this chapter, our goal is to study supervised learning specifically for text
and hypertext documents. Text, as compared to structured data, has a very large
number of potential features, of which many are irrelevant. If the vector-space
model is used, each term is a potential feature. Furthermore, there are many
features that show little information content individually, but in conjunction are
vital inputs for learning.

128 C H A P T E R 5 Supervised Learning

Unlike structured tables with a uniform number of columns2 per instance,
documents can have a diverse number of features. There is little hope of precisely
characterizing the joint distribution of the relevant features, owing to sparsity of
data as well as computational limitations. The number of distinct class labels is
much larger than structured learning scenarios. Finally, the classes may be related
by hierarchical relationships, commonly seen in topic directories on the Web.

The models that we shall study in this chapter, although mostly restricted to
text alone, will form building blocks for more complex models that couple hyper-
link structure with topics, discussed in Chapters 6 and 7. Hypertext classification
is at the core of many resource discovery systems that start from pages related to a
specified topic and locate additional relevant pages. We will study such systems in
Chapters 7 and 8. Supervised learning and its variants are also used for extracting
structured snippets of information from unstructured text, which we will discuss
in Chapter 9.

5.2 Overview of Classification Strategies
I will present a number of techniques for text classification and comment on their
features, strengths, and weaknesses.

Given a typical IR system based on vector-space similarity (see Chapter 3), it
is very easy to build a nearest neighbor (NN) classifier. An NN classifier (Section 5.4)
simply indexes all the training set documents, remembering their class labels. A
test document is submitted as a query to the IR system, and the distribution of
labels on the training documents most similar to it are used to make a decision.

The vector-space model assigns large weights to rare terms, without regard
to the frequency with which terms occur across documents from different classes.
The process of feature selection (Section 5.5) removes terms in the training doc-
uments that are statistically uncorrelated with the class labels, leaving behind a
reduced subset of terms to be used for classification. Feature selection can improve
both speed and accuracy.

Next we study Bayesian classifiers (Section 5.6), which fit a generative term
distribution Pr(d|c) (see Section 4.4.1) to each class c of documents {d}. While
testing, the distribution most likely to have generated a test document is used to
label it. This is measured as Pr(c|d) and derived from Pr(d|c) using Bayes’s rule.

2. To be sure, structured tabular data may have entries such as “null,” “unknown,” or “not applicable,”
but these are usually modeled as categorical attribute values.

5.3 Evaluating Text Classifiers 129

Another approach is to estimate a direct distribution Pr(c|d) from term space
to the probability of various classes. Maximum entropy classifiers (Section 5.8) are an
example of this approach. We may even represent classes by numbers (for a two-
class problem, −1 and +1, say) and construct a direct function from term space
to the class variable. Support vector machines (Section 5.9.2) are an example of this
approach.

For hypertext applications, it is sometimes necessary to assemble features of
many different kinds into a document representation. We may wish to combine
information from ordinary terms, terms in titles, headers and anchor text, the
structure of the HTML tag-tree in which terms are embedded, terms in pages
that are link neighbors of the test page, and citation to or from a page with a
known class label, to name a few. We will discuss rule induction over such diverse
features in Section 5.10.2.

As with ad hoc query processing in IR systems, care with tokenization and
feature extraction may be important for classification tasks. For example, replacing
monetary amounts, four-digit years, and time in the form “hh:mm” by a special
token for each type of string has been known to improve accuracy. For words that
can be associated with multiple senses or parts of speech, we have seen part-of-
speech or sense disambiguation improve accuracy slightly. In another application,
abbreviation of phrases was key: for example, some documents mentioned “mild
steel” while others used “M.S.” or “M/S.” In a different context, “M.S.” may be
mistaken for an academic degree. Clearly, designing a suitable token representation
for a specific classification task is a practiced art. Automating feature extraction
and representation for specific tasks is an interesting area of research.

5.3 Evaluating Text Classifiers
There are several criteria to evaluate classification systems:

� Accuracy, the ability to predict the correct class labels most of the time. This is
based on comparing the classifier-assigned labels with human-assigned labels.

� Speed and scalability for training and applying/testing in batch mode.
� Simplicity, speed, and scalability for document insertion, deletion, and modi-

fication, as well as moving large sets of documents from one class to another.
� Ease of diagnosis, interpretation of results, and adding human judgment and

feedback to improve the classifier.

130 C H A P T E R 5 Supervised Learning

Ideally, I would like to compare classifiers with regard to all of these criteria, but
simplicity and ease of use are subjective factors, and speed and scalability change
with evolving hardware. Therefore, I will mainly focus on the issue of accuracy,
with some comments on performance where appropriate.

5.3.1 Benchmarks
The research community has relied on a few labeled collections, some of which
have by now become de facto benchmarks. I describe a few of them below.

Reuters: The Reuters corpus has roughly 10,700 labeled documents with 30,000
terms and 135 categories. The raw text takes about 21 MB. There is a prede-
fined division of the labeled documents into roughly 7700 training and 3000
test documents. About 10% of the documents have multiple class labels. It ap-
pears that a document’s membership in some of the classes is predicated simply
on the occurrence of a small, well-defined set of keywords in the document.

OHSUMED: This corpus comprises 348,566 abstracts from medical journals,
having in all around 230,000 terms and occupying 400 MB. It is mostly
used to benchmark IR systems on ad hoc queries, but it can also be used
for classification. Each document is tagged with one or more Medical Subject
Headings (MeSH) terms from a set of over 19,000 MeSH terms, which may
be regarded as labels.

20NG: This corpus has about 18,800 labeled Usenet postings organized in a
directory structure with 20 topics. There are about 94,000 terms. The raw
concatenated text takes up 25 MB. The labeled set is usually split randomly
into training and test sets, with, say, 75% chosen as training documents. The
class labels are in a shallow hierarchy with five classes at the first level and 20
leaf classes.

WebKB: The WebKB corpus has about 8300 documents in 7 categories. About
4300 pages on 7 categories (faculty, project, and the like) were collected from
four universities, and about 4000 miscellaneous pages were collected from
other universities. For each classification task, any one of the four university
pages are selected as test documents and the rest as training documents. The
raw text is about 26 MB.

Industry: This is a collection of about 10,000 home pages of companies from 105
industry sectors (e.g., advertising, coal, railroad, semiconductors, etc.). The
industry sector names are the class labels. There is a shallow hierarchy over

5.3 Evaluating Text Classifiers 131

the labels. The first level has about 80 classes, and there are 105 leaves. The
labeling is published on www.marketguide.com.

5.3.2 Measures of Accuracy
Depending on the application, one of the following assumptions is made:

� Each document is associated with exactly one class.
� Each document is associated with a subset of classes.

For most topic-based applications, the total number of classes is usually more
than two. This is not a problem in the “exactly one” scenario. In this setting,
a confusion matrix M can be used to show the classifier’s accuracy. Entry M [i, j]
gives the number of test documents belonging to class i that were assigned to
class j by the classifier. If the classifier were perfect, only diagonal elements M [i, i]
would be nonzero. If M is large, it is difficult to evaluate a classifier at a glance,
so sometimes the ratio of the sum of diagonals to the sum of all elements in the
matrix is reported as an accuracy score. The closer this ratio is to 1 the better the
classifier.

To avoid searching over the power set of class labels in the “subset” scenario,
many systems create a two-class problem for every class. For example, if the
original data specified a class Sports, a classifier with classes Sports and Not-sports
would be created. Documents labeled Sports would be examples of the positive
class; all other documents would be examples of the negative class Not-sports. A
test document would be submitted to all these classifiers to get a class subset. This
is also called the two-way ensemble or the one-vs.-rest technique.

Ensemble classifiers are evaluated on the basis of recall and precision, similar
to ad hoc retrieval (see Chapter 3). Let test document d be hand tagged3 with a
set of classes Cd, and suppose the classifier outputs its estimated set of classes C ′d.
Here Cd, C ′d ⊆ C, the universe of class labels.

The recall for class c is the fraction of test documents hand tagged with c that
were also tagged with c by the classifier. The precision for class c is the fraction of
test documents tagged with c by the classifier that were also hand tagged with c.
As in ad hoc retrieval, there is a trade-off between recall and precision.

3. By “hand tagged,” I mean that these labels are the “ground truth” against which the classifier is
evaluated.

132 C H A P T E R 5 Supervised Learning

Classifier for c1 Classifier for c2 Classifier for c3
Guess Guess Guess

c̄1 c1 c̄2 c2 c̄3 c3
True c̄1 70 10 True c̄2 40 20 True c̄3 61 9

c1 5 15 c2 14 26 c3 19 11

Precision P1= 15/(15+ 10) P2 = 26/(26+ 20) P3= 11/(11+ 9)
Recall R1= 15/(15+ 5) R2 = 26/(26+ 14) R3= 11/(11+ 19)

Microaveraged precision: 15+26+11
(15+10)+(26+20)+(11+9)

Microaveraged recall: 15+26+11
(15+5)+(26+14)+(11+19)

Macroaveraged precision: 1
3(P1+ P2 + P3)

Macroaveraged recall: 1
3(R1+ R2 + R3)

F I G U R E 5 . 2 How to evaluate the accuracy of classifiers. “True” is the hand-assigned class label
any; “Guess” is the classifier output. See text for details.

Here is a simple notation to understand recall and precision in a precise
manner. For each c and each d, we define a 2× 2 contingency matrix Md,c,
as follows (the expression [E] means 1 if the predicate E is true and 0 otherwise):

Md,c[0, 0]= [c ∈ Cd and classifier outputs c]

Md,c[0, 1]= [c ∈ Cd and classifier does not output c] (loss of recall)

Md,c[1, 0]= [c �∈ Cd and classifier outputs c] (loss of precision)

Md,c[1, 1]= [c �∈ Cd and classifier does not output c]

(5.1)

Thus for each (d, c), Md,c has exactly one nonzero entry out of four.
The microaveraged contingency matrix is defined as Mµ =

∑
d,c Md,c. The

microaveraged recall is defined as
Mµ[0,0]

Mµ[0,0]+Mµ[0,1]. The microaveraged precision
is defined as

Mµ[0,0]
Mµ[0,0]+Mµ[1,0]. All this is exactly analogous to ad hoc recall and

precision. Consider a three-class problem. For each class c = c1, c2, c3, we train
one classifier with classes c and c̄. Let the total number of test documents be 100,
and suppose the three classifiers perform as shown Figure 5.2. The micro- and
macroaveraged recall and precision are shown in the same figure.

Microaveraging makes the overall precision and recall depend most on the ac-
curacy observed for the classes with the largest number of (positive) documents:
the accuracy can be poor for classes with few positive examples without affecting

TE
AM
FL
Y

Team-Fly®

5.4 Nearest Neighbor Learners 133

the overall numbers much. One may also look at the data aggregated by specific
classes, Mc =

∑
d Mc,d. This will give the recall and precision for each class sep-

arately. Suppose Mc is scaled so the four entries add up to one, giving M ′c . The
macroaveraged contingency matrix can be defined as (1/|C|)∑c M ′c . The macroav-
eraged recall and precision can then be defined in the usual way. Macroaveraged
measures pay equal importance to each class, whereas microaveraged measures
pay equal importance to each document.

For most classifiers, various parameters can be tuned so that the set of classes
returned for a test document may be made to trade off recall for precision or
vice versa. It is common to report classifier performance by plotting a graph of
(micro- or macroaveraged) precision against recall. A better classifier has a higher
curve (see Figure 5.14 for an example). One may also plot the line y = x on this
graph and note where this intersects the recall-precision plot. This point is called
the break-even point. Also used is the so-called F1 score, which is defined as the
harmonic mean of recall and precision:

F1= 2× recall × precision

recall + precision

where recall and precision may be defined in the various ways mentioned above.
The harmonic mean discourages classifiers that sacrifice one measure for another
too drastically.

5.4 Nearest Neighbor Learners
The basic intuition behind nearest neighbor (NN) classifiers is that similar docu-
ments are expected to be assigned the same class label. The vector-space model
introduced in Chapter 3 and the cosine measure for similarity lets us formalize
the intuition.

At training time, we simply index each document (as described in Chapter 3)
and remember its class label. Given a test document dq, we use it as a query and
let the IR system fetch us the k training documents most similar to dq (k is a tuned
constant). The class that occurs the largest number of times among these k training
documents is reported as the class of the test document dq (see Figure 5.3).

As a refinement, rather than accumulate raw counts of classes, we can accu-
mulate weighted counts. If training document d has label cd, cd accumulates a score
of s(dq, d), the vector-space similarity between dq and d, on account of d. The
class with the maximum score wins. Yet another refinement is to use a per-class

134 C H A P T E R 5 Supervised Learning

"the"
Test document

Training
documents

"model" "markov"

Documents about skiing

Documents not about skiing

Test document

F I G U R E 5 . 3 Nearest neighbor classification.

offset bc, which is tuned by testing the classifier on a portion of training data held
out for this purpose. Combining these ideas, the score of class c for test document
dq is given as

score(c, dq)= bc +
∑

d∈kNN(dq)

s(dq, d) (5.2)

where kNN(dq) is the set of k training documents most similar to dq.
Because NN classifiers do very little at training time, they are also called lazy

learners. Like bc, the parameter k can be tuned by setting aside a portion of the
labeled documents for validation (see Figure 5.1) and trying out various values
of k, a process called cross-validation. Another approach would be to cluster the
training set using some technique from Chapter 4 and choosing a value of k that
is related to the size of small clusters.

5.4.1 Pros and Cons
An NN learner has several advantages and disadvantages. The biggest advantage
is that very often it comes for free; there may already be an inverted index on the
collection to support full-text searching that can be reused for classification. This
also makes collection updates trivial to handle (because the classifier is “lazy” and
does nothing but indexing at training time). With properly tuned values of k and

5.4 Nearest Neighbor Learners 135

bc for each label c, k-NN classifiers are comparable in accuracy to the best-known
classifiers.

On the other hand, classifying a test document dq involves as many inverted
index lookups as there are distinct terms in dq, followed by scoring the (possibly
large number of) candidate documents that overlap with dq in at least one word,
sorting by overall similarity, and picking the best k documents, where k could be
very small compared to the number of candidates. Such queries are called iceberg
queries (because the user is looking for the tip of the iceberg) and are difficult to
answer in time that is comparable to output size. In contrast, in the case of naive
Bayesian classifiers (introduced in Section 5.6.1), each inverted list has length
related to the number of classes, which is much smaller than the number of training
documents.

A related problem with NN classifiers is the space overhead and redundancy
in storing the training information, which is recorded at the level of individual
documents. The classifier, being “lazy,” does not distill this data into simpler “class
models,” unlike many of the more sophisticated classifiers we will study later on.

In practice, to reduce space requirements, as well as speed up classification,
lazy learners are made to work a little harder at training time. For example, we may
find clusters in the data (see Chapter 4) and store only a few statistical parameters
per cluster. A test document is first compared with a few cluster representatives
and then with the documents in only the most promising clusters. Unfortunately
this strategy often leads to various ad hoc choices, for example, number and size
of clusters and parameters. In addition, choosing k is a practiced art and the best
choice can be sensitive to the specific corpus at hand.

5.4.2 Is TFIDF Appropriate?
Recall that in the computation of similarity s in Equation (5.2), each dimension
or term was assigned an inverse document frequency with respect to the whole
corpus. This may fail to exploit correlations between class labels and the term
frequencies. An example with two classes, each having 100 training documents,
will make this clear. Consider two terms. One term t1 occurs in 10 documents
in each class, that is, in 10% of the overall corpus. The other term t2 occurs in
40 documents in the first class but none in the second class, that is, in 20% of the
corpus. Thus, t1 is “rarer,” and IDF scoring will downplay the role of t2 in the
distance measure.

Clearly, class labels on training documents should play a central role in making
judgments about how well a term can help discriminate between documents from

136 C H A P T E R 5 Supervised Learning

different classes. Terms that occur relatively frequently in some classes compared
to others should have higher importance; overall rarity in the corpus is not as
important. In the next section, I shall introduce several techniques for estimating
the importance of features.

5.5 Feature Selection
We can make a reasonable estimate of a distribution over features when the
number of training instances is substantially larger than the number of features.
Unfortunately, this is not the case with text. Let us revisit the binary document
model where word counts are ignored (see Section 4.4.1). With a vocabulary set
W , there are 2|W | possible documents. For the Reuters data set, that number
would be 230,000 ≈ 1010,000, whereas there are only about 10,300 documents
available. In any set of training documents, we will witness a very tiny fraction
of these possible documents. Therefore, any estimate of the joint probability
distribution over all terms will be very crude.

If we abandon trying to estimate the joint distribution of all terms and restrict
ourselves, as in Section 4.4.1, to estimating the marginal distribution of each term
(in each class), the situation improves drastically. However, it may still be nontrivial
to judge, from a limited training collection, whether a given term appears more
frequently in one class compared to another.

We clarify the issue using a simple two-class example. Let there be N training
documents sampled from each class, and fix a term t. Drawing a document and
checking if it contains t is like tossing a coin. For the two classes, we can imagine
two coins, with Pr(head)= φ1 and φ2, each of which has been tossed N times
and produced k1 and k2 heads, respectively. It is possible that φ1 < φ2 but k1 > k2,
especially if N is small. If N is too small for us to believe that φ1 < φ2 or φ1 > φ2
with sufficient confidence, it may be better not to use t for classification rather than
build an unreliable model, which may lead us to wrong decisions on an ulimited
number of test documents. Building an unreliable model that fits limited training
data closely, but fails to generalize to unforeseen test data is called overfitting.

Feature selection can be heuristic, guided by linguistic and domain knowl-
edge, or statistical. Many classifiers eliminate standard stopwords like a, an, the, and
so on. We have seen this to improve classification accuracy a little, even though
some stopwords appear to be correlated with the class label. Some classifiers also
perform quick-and-dirty approximations to feature selection by ignoring terms
that are “too frequent” or “too rare” according to empirically chosen thresholds,
which may be corpus- and task-sensitive.

5.5 Feature Selection 137

As data sets become larger and more complex, these simple heuristics may
not suffice. The challenge looms large especially for hierarchical topic directories,
because as one surfs down into detailed topics, terms that would be excellent
discriminators with respect to English start resembling stopwords with respect to
the specialized collection. Furthermore, in settings such as the Web, jargon and
multilingual content makes stopwording difficult.

Feature selection is desirable not only to avoid overfitting and thus improve
accuracy but also to maintain accuracy while discarding as many features as possible,
because a great deal of space for storing statistics is saved in this manner. The
reduction in space usually results in better classification performance. Sometimes,
the reduced class models fit in main memory; even if they don’t, caching becomes
more effective.

The “perfect” algorithm for feature selection would be goal-directed: it would
pick all possible subsets of features, and for each subset train and test a classifier,
and retain that subset that resulted in the highest accuracy. For common text
collections this is a computational impossibility. Therefore, the search for feature
subsets has to be limited to a more manageable extent.

In this section we will study two basic strategies for feature selection. One
starts with the empty set and includes good features; the other starts from the
complete feature set and excludes irrelevant features.

5.5.1 Greedy Inclusion Algorithms
The most commonly used class of algorithms for feature selection in the text
domain share the following outline:

1. Compute, for each term, a measure of discrimination among classes.

2. Arrange the terms in decreasing order of this measure.

3. Retain a number of the best terms or features for use by the classifier.

Often, the measure of discrimination of a term is computed independently
of other terms—this is what makes the procedure “greedy.” It may result in some
terms appearing to be useful that actually add little value given certain other
terms that have already been included. In practice, this overinclusion often has
mild effects on accuracy.

Several measures of discrimination have been used. The choice depends on
the model of documents used by the classifier, the desired speed of training
(feature selection is usually considered a part of training), and the ease of updates
to documents and class assignments. Although different measures will result in

138 C H A P T E R 5 Supervised Learning

somewhat different term ranks, the sets included for acceptable accuracy will tend
to have large overlap. Therefore, most classifiers will tend to be insensitive to
the specific choice of discrimination measures. I describe a few commonly used
discrimination measures next.

The χ2χ2 test

Classic statistics provides some standard tools for testing if the class label and a
single term are “significantly” correlated with each other. For simplicity, let us
consider a two-class classification problem and use the binary document model
(see Section 4.4.1). Fix a term t, let the class labels be 0 and 1, and let

ki,0 = number of documents in class i not containing term t

ki,1= number of documents in class i containing term t

This gives us a 2× 2 contingency matrix

It
0 1

C 0 k00 k01

1 k10 k11

where C and It denote Boolean random variables and k�m denotes the number
of observations where C = � and It = m. We would like to test if these random
variables are independent or not. Let n = k00+ k01+ k10+ k11. We can estimate
the marginal distributions as

Pr C = 0= (k00 + k01)/n,
Pr(C = 1)= 1− Pr(C = 0)= (k10 + k11)/n,
Pr(It = 0)= (k00 + k10)/n, and
Pr(It = 1)= 1− Pr(It = 0)= (k01+ k11)/n

If C and It were independent we would expect Pr(C = 0, It = 0) = Pr(C =
0) Pr(It = 0). Our empirical estimate of Pr(C = 0, It = 0) is k00/n. The same
holds for the three other cells in the table. We expect cell (�, m) to have value
n Pr(C = �, It = m), and its observed value is k�m. The χ2 measure aggregates
the deviations of observed values from expected values (under the independence
hypothesis), as follows:

χ2 =
∑
�,m

(
k�m − n Pr(C = �) Pr(It = m)

)2
n Pr(C = �) Pr(It = m)

5.5 Feature Selection 139

This can be simplified to

χ2 = n(k11k00 − k10k01)
2

(k11+ k10)(k01+ k00)(k11+ k01)(k10 + k00)
(5.3)

The larger the value of χ2, the lower is our belief that the independence as-
sumption is upheld by the observed data. Statisticians use precompiled tables to
determine the confidence with which the independence assumption is refuted.
This test is similar to the likelihood ratio test, described in Section 3.2.5, for
detecting phrases.

For feature selection, it is adequate to sort terms in decreasing order of their
χ2 values, train several classifiers with a varying number of features (picking the
best ones from the ranked list), and stopping at the point of maximum accuracy.
See Figures 5.4 and 5.5 for details.

Mutual information

This measure from information theory is useful when the multinomial document
model (see Section 4.4.1) is used, term occurrences are regarded as discrete events,
documents are of diverse length (as is usual), and no length scaling is performed.

If X and Y are discrete random variables taking specific values denoted x, y,
then the mutual information (MI) between them is defined as

MI(X , Y)=
∑

x

∑
y

Pr(x, y) log
Pr(x, y)

Pr(x) Pr(y)
(5.4)

where the marginal distributions are denoted Pr(x) and Pr(y), shorthand for
Pr(X = x) and Pr(Y = y) as usual.

MI measures the extent of dependence between random variables, that is,
the extent to which Pr(x, y) deviates from Pr(x) Pr(y) (which represents the
independence assumption), suitably weighted with the distribution mass at (x, y).
(Therefore, deviations from independence at rare values of (x, y) are played down
in the measure.) If X and Y are independent, then Pr(x, y)/Pr(x) Pr(y)= 1 for
all x, y and therefore MI(X , Y)= 0. It can also be shown that MI(X , Y) is zero
only if X and Y are independent. The more positive it is, the more correlated X
and Y are.

There are several instructive ways to interpret MI. One interpretation is
that it is the reduction in the entropy of X if we are told the value of Y , or
equivalently, the reduction in the entropy of Y given X . The entropy of a
random variable X taking on values from a discrete set of symbols {x} is given

140 C H A P T E R 5 Supervised Learning

by H(X)=−∑x Pr(x) log Pr(x). The conditional entropy H(X |Y) is given by
−∑x,y Pr(x, y) log Pr(x|y)=−∑x,y log Pr(x,y)

Pr(y) . It is easy to verify that

MI(X , Y)=H(X)−H(X |Y)=H(Y)−H(Y |X) (5.5)

If the difference in entropy is large, the value of X tells us a lot about the
conditional distribution of Y and vice versa.

Another interpretation of MI uses the Kullback-Leibler (KL) distance [57]
between distributions. The KL distance from distribution 	1 to 	2, each defined
over a random variable Z taking values from the domain {z}, is defined as

KL(1‖	2)=
∑

z

Pr	1
(z) log

Pr	1
(z)

Pr	2
(z)

The KL distance gives the average number of bits wasted by encoding events from
the “correct” distribution 	1 using a code based on a not-quite-right distribution
	2. In our case, Z = (X , Y), z = (x, y), and the model 	2 = 	independent
corresponds to the hypothesis that X and Y are independent, that means that
Pr(x, y)= Pr(x) Pr(y), whereas 	1=	true makes no such assumption. Thus,

KL(true‖	independent)=
∑
x,y

Pr(x, y) log
Pr(x, y)

Pr(x) Pr(y)
=MI(X , Y) (5.6)

If MI(X , Y) turns out to be zero, 	independent was a perfectly accurate approxi-
mation to 	true. To the extent MI(X , Y) is large, X and Y are dependent.

To apply MI to feature selection, we will map the above definition to
document models in a natural way. Fix a term t and let It be an event associated
with that term. The definition of the event will vary depending on the document
model. For the binary model, it ∈ {0, 1}, whereas for the multinomial model, it is
a nonnegative integer. Pr(it) is the empirical fraction of documents in the training
set in which event it occurred. For example, in the multinomial model, Pr(It = 2)
is the empirical fraction of documents in which term t occurred twice. Let c range
over the set of classes. Pr(it, c) is the empirical fraction of training documents that
are in class c with It = it. Pr(c) is the fraction of training documents belonging to
class c.

For the binary document model and two classes (as in the case of the χ2 test),
the MI of term t with regard to the two classes can be written as

MI(It, C)=
∑

�,m∈{0,1}

k�,m

n
log

k�,m/n

(k�,0 + k�,1)(k0,m + k1,m)/n2
(5.7)

5.5 Feature Selection 141

A possible problem with this approach is that document lengths are not
normalized. If a term occurs roughly at the same rate (say, five times per 10,000
words) in two classes, but one class has longer documents than the other, the
term may appear to be a good feature using this measure. For this reason, length-
normalized feature selection algorithms are sometimes preferred.

Fisher’s discrimination index

This measure is useful when documents are scaled to constant length, and there-
fore, term occurrences are regarded as fractional real numbers. For simplicity let us
again consider a two-class learning problem. Let X and Y be the sets of document
vectors corresponding to the two classes. The components of these document vec-
tors may be raw term counts scaled to make each document vector unit length,
or we may already have applied some term-weighting scheme.

Let µX = (
∑

X x)/|X | and µY = (
∑

Y y)/|Y | be the mean vectors, or
centroids, for each class. Each document vector and these mean vectors are
column vectors in R

m, say. Further, let the respective covariance matrices be SX =
(1/|X |)∑X(x−µX)(x−µX)T and SY = (1/|Y |)∑Y (y−µY)(y−µY)T . The
covariance matrices are m× m in size.

Fisher’s discriminant seeks to find a column vector α ∈ R
m such that the

ratio of the square of the difference in mean vectors projected onto it, that
is, (αT (µX − µY))2, to the average projected variance 1

2α
T (SX + SY)α, is

maximized. Noting that both the numerator and denominator are scalar numbers,
and that αTSXα is a simple way of writing (1/|X |)∑X αT (x−µX)(x−µX)Tα,
we can write

α∗ = arg max
α

J(α)= arg max
α

(αT (µX − µY))2

αT (SX + SY)α
(5.8)

Informally, Fisher’s discriminant finds a projection of the data sets X and Y onto
a line such that the two projected centroids are far apart compared to the spread
of the point sets projected onto the same line.

With S = (SX + SY)/2, it can be shown that α = S−1(µX − µY) achieves
the extremum when S−1 exists. (We will omit the “2” where it won’t affect the
optimization.) Also, if X and Y for both the training and test data are generated
from multivariate Gaussian distributions with SX = SY , this value of α induces
the optimal (minimum error) classifier by suitable thresholding on αTq for a test
point q.

142 C H A P T E R 5 Supervised Learning

Fisher’s discriminant in the above form has been used in signal-processing
applications, in which the number of dimensions in the x and y vectors is on
the order of hundreds at most. Inverting S would be unacceptably slow for tens
of thousands of dimensions. To make matters worse, although the raw data set is
sparse (most words occur in few documents), the linear transformations would
destroy sparsity. In any case, our goal in feature selection is not to arrive at linear
projections involving multiple terms but to eliminate terms from consideration.

Therefore, instead of looking for the best single direction α, we will regard
each term t as providing a candidate direction αt, which is parallel to the corre-
sponding axis in the vector-space model. That is, αt = (0, . . . , 1, . . . , 0)T , with
a 1 in the tth position alone. We will then compute the Fisher’s index (FI) of t,
defined as

FI(t)= J(αt)=
(αT

t (µX − µY))2

αT
t Sαt

(5.9)

Because of the special form of αt, the expression above can be greatly simplified.
αT

t µX = µX ,t, the tth component of µX , and αT
t µY = µY ,t, the tth component

of µY . αTSXα can also be simplified to (1/|X |)∑X(xt − µX ,t)
2, and αTSYα

can be simplified to (1/|Y |)∑Y (yt − µY ,t)
2. Thus we can write

FI(t)= (µX ,t − µY ,t)
2

(1/|X |)∑X(xt − µX ,t)
2 + (1/|Y |)∑Y (yt − µY ,t)

2
(5.10)

This measure can be generalized to a set {c} of more than two classes to yield the
form

FI(t)=
∑

c1,c2
(µc1,t − µc2,t)

2∑
c

1
|Dc|

∑
d∈Dc

(xd,t − µc,t)
2

(5.11)

where Dc is the set of training documents labeled with class c. Terms are sorted
in decreasing order of FI(t) and the best ones chosen as features.

Validation

Merely ranking the terms does not complete the process; we have to decide a
cutoff rank such that only terms that pass the bar are included in the feature set. We
can do this by validation or cross-validation. In the validation approach, a portion
of the training documents are held out, the rest being used to do term ranking.
Then the held-out set is used as a test set. Various cutoff ranks can be tested using

TE
AM
FL
Y

Team-Fly®

5.5 Feature Selection 143

Project
to FValidation

set

Training
set

Project
to F

Accuracy

F

Feature
subset
search

heuristic

Learn

Test on
validation

set

Class
models

F I G U R E 5 . 4 A general illustration of wrapping for feature selection.

the same held-out set. In leave-one-out cross-validation, for each document d in
the training set D, a classifier is trained over D \ {d} and then tested on d. If this
takes too much time, a simpler form of cross-validation can be used. The training
set is partitioned into a few parts. In turn, one part is taken to be the test set,
and the remaining parts together form the training set. An aggregate accuracy is
computed over all these trials.

The training and test sets, derived using any of the approaches described above,
may be used with a wrapper , shown in Figure 5.4, to search for the set of features
that yield the highest accuracy. A simple “search heuristic” shown in the diagram
is to keep adding one feature at every step until the classifier’s accuracy ceases to
improve. For certain kinds of classifiers (e.g., maximum entropy classifiers, see
Section 5.8, or support vector machines, see Section 5.9.2), such a search would
be very inefficient: it would essentially involve training a classifier from scratch
for each choice of the cutoff rank. Luckily, some other classifiers (like the naive
Bayesian classifier, see Section 5.6) can be evaluated on many choices of feature
sets at once.

Figure 5.5 shows the effect of feature selection on the accuracy of Bayesian
classifiers, which I will discuss in detail in Section 5.6. The corpus is a selection of
9600 patents sampled from the U.S. Patent database. The terms were ordered using
Fisher’s discriminant. The classifiers use the binary and multinomial document
models, discussed in Section 4.4.1. Only 140 out of about 20,000 raw features

144 C H A P T E R 5 Supervised Learning

0.7

0.6

0.5

0.4

0.3A
cc

ur
ac

y

0.2

0.1

0
0 100 200

Number of features

300 400

Multinomial
Binary

F I G U R E 5 . 5 Effect of feature selection on Bayesian classifiers.

suffice for the best feasible accuracy, which cuts down statistics storage and access
costs dramatically. For reasons given later, Bayesian classifiers cannot overfit much,
although there is a visible degradation in accuracy beyond the best choice of the
number of features. The accuracy varies quite smoothly in the vicinity of the
maximum. Barring minor fluctuations, the accuracy increases sharply as the very
best features are included one by one, then fluctuates slightly near the crest (which
is quite wide) before showing a small drop-off.

5.5.2 Truncation Algorithms
Another approach to feature selection is to start from the complete set of terms
T and drop terms from consideration, ending up with a feature subset F ⊆ T .
What is the desirable property relating F to T ?

Most probabilistic classifiers must, one way or another, derive a conditional
probability distribution of class labels given data, which we denote as Pr(C|T),
where C is the class label and T is the multivariate term vector. As a result of
restricting the training data to F , the distribution changes to Pr(C|F). We would
like to keep the distorted distribution Pr(C|F) as similar as possible to the original
Pr(C|T) while minimizing the size of F . The similarity or distance between two
distributions can be measured in various ways; a well-known measure is the KL
distance discussed above.

5.5 Feature Selection 145

1: while truncated Pr(C|F) is reasonably close to original Pr(C|T) do
2: for each remaining feature X do
3: Identify a candidate Markov blanket M:
4: For some tuned constant k, find the set M of k variables in F \ X that are

most strongly correlated with X
5: Estimate how good a blanket M is:
6: Estimate∑

Pr(XM = xM , X = x)KL
(
Pr(C|XM = xM , X = x),

xM ,x Pr(C|XM = xM)
)

7: end for
8: Eliminate the feature having the best surviving Markov blanket
9: end while

F I G U R E 5 . 6 Pseudocode for a heuristic algorithm for feature truncation.

Two random variables P and Q are said to be conditionally independent given R,
if for any value assignments p, q, r , Pr(P = p|Q = q|R = r)= Pr(P = p|R = r).
Thus, Q gives no information about P over and above that which we gain by
knowing the value of R.

Let X be a feature in T . Let M ⊆ T \ {X}. M is called a Markov blanket
for X ∈ T if X is conditionally independent of (T ∪ C) \ (M ∪ {X}), given M .
Intuitively, the presence of M renders the presence of X unnecessary as a feature. It
can be shown that eliminating a variable because it has a Markov blanket contained
in other existing features does not increase the KL distance between Pr(C|T) and
Pr(C|F). In practice, there may not be a perfect Markov blanket for any variable,
but only an approximate one, and finding it may be difficult. To control the
computational cost, we may limit our search for Markov blankets M to those
with at most k features. As another cost-cutting heuristic, given feature X , we
may restrict our search for the members of M to those features that are most
strongly correlated (using tests similar to the χ2 or MI tests) with X . A sample
pseudocode is shown in Figure 5.6. In experiments with the Reuters data set,
over two-thirds of T could be discarded while increasing classification accuracy by
a few percentage points.

5.5.3 Comparison and Discussion
I have presented a variety of measures of association between terms and class
labels, and two generic approaches to selecting features. The preferred choice of

146 C H A P T E R 5 Supervised Learning

association measure and selection algorithm depends on the nature and difficulty
of the classification task.

In my experience with several kinds of classifiers and standard benchmarks,
I have found that the choice of association measures does not make a dramatic
difference, provided the issue of document length is addressed properly. Although
different association measures induce different orderings on the terms, by the time
we have included enough terms for acceptable accuracy, the set of terms included
under all the orderings show significant overlap.

Greedy inclusion algorithms scale nearly linearly with the number of features,
whereas the Markov blanket technique is much more elaborate and general, taking
time proportional to at least |T |k. Markov blankets seek to improve upon greedy
inclusion in two important ways, illustrated by these simplified examples:

� The correlation between C and X1, and between C and X2, may be individ-
ually strong, while X1’s power to predict C may render X2 unnecessary as a
feature, or vice versa. A greedy inclusion algorithm may include them both.

� The correlation between C and X1, and between C and X2, may be individ-
ually weak, but collectively, X1, X2 may be an excellent predictor of C. This
might happen if X1, X2 are associated with phrases whose constituent term(s)
also appear in other contexts. A greedy inclusion approach might discard both
X1 and X2.

The first concern is primarily one of efficiency. Greedy inclusion may over-
estimate the number of features required. If the classifier has high quality, feature
redundancy does not affect accuracy; it is purely a performance issue. Even for
crude classifiers, the effect on accuracy is generally quite small (see, e.g., Fig-
ure 5.5).

The second concern is potentially more serious, but practical experience
[138] seems to indicate that there is enough natural redundancy among features
in text that we need not be too concerned with missing weak signals. In particular,
it is rare to find X1 and X2 weakly correlated with C but jointly predicting C much
better than other single features.

In my experience, the binary view of a feature being either useful or not is not
the best possible, especially for hypertext applications where artificial features need
to be synthesized out of markup or hyperlinks. As Joachims [119] and others point
out, textual features are many in number, each being of low quality. Most have
tiny amounts of information for predicting C, but these tiny amounts vary a great
deal from one feature to another. To accommodate that view, a classifier might

5.6 Bayesian Learners 147

transform and combine features into fewer, simpler ones, rather than just discard
a large number of features. A common technique is to represent the documents
in vector space (see Chapter 3) and then project the document vectors to a lower-
dimensional space using a variety of approaches (see Chapter 4). Investigating the
effect of such transformations on classification accuracy can be an interesting area
of research.

5.6 Bayesian Learners
Once feature selection is performed, nonfeature terms are removed from the
training documents, and the resulting “clean” documents are used to train the
learner. In this section we will study Bayesian learners, a practical and popular kind
of statistical learner. In spite of their crude approximations, Bayesian classifiers
remain some of the most practical text classifiers used in applications.

We will assume, for simplicity of exposition, that a document can belong to
exactly one of a set of classes or topics. Document creation is modeled as the
following process:

1. Each topic or class c has an associated prior probability Pr(c), with
∑

c Pr(c)=
1. The author of a document first picks a topic at random with its correspond-
ing probability.

2. There is a class-conditional document distribution Pr(d|c) for each class.
Having earlier fixed a class c, its document distribution is used to generate
the document.

Thus the overall probability of generating the document from class c is
Pr(c) Pr(d|c). Finally, given the document d, the posterior probability that d was
generated from class c is seen, using Bayes’s rule, to be

Pr(c|d)= Pr(c) Pr(d|c)∑
γ Pr(γ) Pr(d|γ)

(5.12)

γ ranges over all classes so that Pr(c|d) becomes a proper probability measure.
Pr(d|c) is estimated by modeling the class-conditional term distribution in

terms of a set of parameters that we can collectively call 	. Our estimate of 	 is
based on two sources of information:

� Prior knowledge that exists before seeing any training documents for the
current problem. This is characterized by a distribution on 	 itself.

� Terms in the training documents D.

148 C H A P T E R 5 Supervised Learning

After observing the training data D, our posterior distribution for 	 is written as
Pr(|D). Based on this discussion we can elaborate

Pr(c|d)=
∑
	

Pr(c|d,) Pr(|D)

=
∑
	

Pr(c|) Pr(d|c,)∑
γ Pr(γ |) Pr(d|γ ,)

Pr(|D) (5.13)

The sum may be taken to an integral in the limit for a continuous parameter
space, which is the common case. In effect, because we only know the training
data for sure and are not sure of the parameter values, we are summing over all
possible parameter values. Such a classification framework is called Bayes optimal.
In practice, taking the expectation over Pr(|D) is computationally infeasible
for all but the smallest number of dimensions. A common practice is to replace
the integral above with the value of the integrand (Pr(c|d,)) for one specific
value of 	. For example, we can choose arg max	 Pr(|D), called the maximum
likelihood estimate (MLE). MLE turns out not to work well for text classification;
alternatives are suggested shortly.

5.6.1 Naive Bayes Learners
A statistical learner that is widely used for its simplicity and speed of training,
applying, and updating is the naive Bayes learner. The epithet “naive” signifies
the assumption of independence between terms—that is, that the joint term
distribution is the product of the marginals. The models for the marginals depend
on the document model being used. Here I will use the binary and multinomial
models first introduced in Section 4.4.1.

In the binary model, the parameters are φc,t, which indicates the probability
that a document in class c will mention term t at least once. With this definition,

Pr(d|c)=
∏
t∈d

φc,t

∏
t∈W,t �∈d

(1− φc,t) (5.14)

W being the set of features. We do not wish to calculate
∏

t∈W,t �∈d(1− φc,t) for
every test document, so we rewrite Equation (5.14) as

Pr(d|c)=
∏
t∈d

φc,t

1− φc,t

∏
t∈W

(1− φc,t)

precompute and store
∏

t∈W (1− φc,t) for all c, and only compute the first product
at testing time.

5.6 Bayesian Learners 149

In the multinomial model, each class has an associated die with |W | faces. The
φc,t parameters are replaced with θc,t, the probability of the face t ∈W turning up
on tossing the die. Let term t occur n(d, t) times in document d, which is said to
have length �d =

∑
t n(d, t). The document length is a random variable denoted

L and assumed to follow a suitable distribution for each class. For this model,

Pr(d|c)= Pr(L = �d|c) Pr(d|�d, c)

= Pr(L = �d|c)
(

�d

{n(d, t)}
)∏

t∈d

θn(d,t)
t

(5.15)

where
(�d{n(d,t)}

) = �d!
n(d,t1)! n(d,t2)!··· is the multinomial coefficient, which can be

dropped if we are just ranking classes, because it is the same for all c. It is also
common (but questionable) to assume that the length distribution is the same for
all classes and thus drop the Pr(L = �d|c) term as well.

Both forms of naive Bayes classifiers multiply together a large number of small
probabilities, resulting in extremely tiny probabilities as answers. Care is needed to
store all numbers as logarithms and guard against unwanted underflow. Another
effect of multiplying many tiny φ or θ values is that the class that comes out at
the top wins by a huge margin, with a score very close to 1, whereas all other
classes have negligible probability. The extreme score skew can be unintuitive in
case two or more classes are reasonable candidates.

For two-class problems, a logit function is sometimes used to sanitize the scores.
Let the classes be +1 and −1. The logit function is defined as

logit(d)= 1

1+ e−LR(d)
(5.16)

where

LR(d)= Pr(C =+1|d)

Pr(C =−1|d)

is the likelihood ratio. Note that as LR(d) stretches from 0 to∞, logit(d) ranges
from 1

2 to 1. The logit(x) function has a steep slope near x = 0 and levels off
rapidly for large x. Finding a suitable threshold on the logit function may reduce
the problem of score skew [175].

Parameter smoothing

MLE cannot be used directly in the naive Bayes classifier. For example, in the
binary model, if a test document dq contains a term t that never occurred in any

150 C H A P T E R 5 Supervised Learning

training document in class c, φMLE
c,t = 0. As a result Pr(c|dq) will be zero, even if

a number of other terms clearly hint at a high likelihood of class c generating the
document. Unfortunately, such “accidents” are not rare at all.

There is a rich literature, dating back to Bayes in the 18th century and Laplace
in the 19th century, on the issue of estimating probability from insufficient data.
We can start delving into this issue by posing the following question: If you toss
a coin n times and it always comes up heads, what is the probability that the
(n + 1)st toss will also come up heads? Although MLE leads to the answer 1, it
is not appealing from real-life experience. Furthermore, we certainly expect the
answer to change with n: if n = 1, we are still quite agnostic about the fairness of
the coin; if n = 1000, we have a firmer belief. MLE cannot distinguish between
these two cases.

In our setting, each coin toss is analogous to inspecting a document (in some
fixed class c) to see if term t appears in it. The MLE estimate of φc,t is simply
the fraction of documents in class c containing the term t. When c and/or t are
omitted, they are assumed to be fixed for the rest of this section. Also for this
section let k out of n documents contain the term; we denote this event by the
notation 〈k, n〉.

The Bayesian approach to parameter smoothing is to posit a prior distribution
on φ, called π(φ), before any training data is inspected. An example of π is the
uniform distribution U(0, 1). The posterior distribution of φ is denoted by

π(φ|〈k, n〉)= π(φ) Pr(〈k, n〉|φ)∫ 1
0 dp π(p) Pr(〈k, n〉|p) (5.17)

Usually, the smoothed estimate φ̃ is some property of the posterior distribution
π(φ|〈k, n〉). There is a loss function L(φ, φ̃), which characterizes the penalty for
picking a smoothed value φ̃ as against the “true” value. Often, the loss is taken
as the square error, L(φ, φ̃)= (φ − φ̃)2. For this choice of loss, the best choice
of the smoothed parameter is simply the expectation of the posterior distribution
on φ having observed the data

φ̃ = E(π(φ|〈k, n〉))=
∫ 1

0 p dp π(p) Pr(〈k, n〉|p)∫ 1
0 dp π(p) Pr(〈k, n〉|p) =

∫ 1
0 pk+1(1− p)n−kdp∫ 1

0 pk(1− p)n−kdp

= B(k + 2, n − k + 1)

B(k + 1, n − k + 1)
= �(k + 2)

�(k + 1)

�(n + 2)

�(n + 3)
= k + 1

n + 2
(5.18)

5.6 Bayesian Learners 151

where B and � are the standard beta and gamma functions. Although the deri-
vation is nontrivial, the end result is simple in a misleading way: just “combine”
a prior belief of fairness (1

2) with observed data (k
n). This is called Laplace’s law

of succession. Heuristic alternatives exist; one example is Lidstone’s law of succession,
which sets φ = (k+ λ)/(n+ 2λ), where λ is a tuned constant trading off between
prior belief and data. (In Laplace’s law, they have equal say.)

The derivation for the multinomial document model is quite similar, except
that instead of two possible events in the binary model discussed above, there are
|W | possible events, where W is the vocabulary. Thus

θ̃c,t =
1+∑d∈Dc

n(d, t)

|W | +∑d∈Dc ,τ∈d n(d, τ)
(5.19)

Comments on accuracy and performance

The multinomial naive Bayes classifier generally outperforms the binary variant
for most text-learning tasks. Figure 5.5 shows an example. A well-tuned k-NN
classifier may outperform a multinomial naive Bayes classifier [217], although the
naive Bayes classifier is expected to produce far more compact models and take
less time to classifiy test instances.

Any Bayesian classifier partitions the multidimensional term space into regions
separated by what are called decision boundaries. Within each region, the probability
(or probability density, if continuous random variables are modeled) of one class
is higher than others; on the boundaries, the probabilities of two or more classes
are exactly equal. Two or more classes have comparable probabilities near the
boundaries, that are therefore the regions of potential confusion. Little confusion
is expected in those parts of a region that have a dense collection of examples, all
from the associated class.

To make this more concrete, consider a two-class problem with training data
{(di, ci), i= 1, . . . , n}, where ci ∈ {−1, 1}. As we have seen before, the multinomial
naive Bayes model assumes that a document is a bag or multiset of terms, and
the term counts are generated from a multinomial distribution after fixing the
document length
d, which, being fixed for a given document, lets us write

Pr(d|c,
d)=
(

d

{n(d, t)}
)∏

t∈d

θn(d,t)
c,t (5.20)

where n(d, t) is the number of times t occurs in d, and θc,t are suitably estimated
multinomial probability parameters with

∑
t θc,t = 1 for each c (see Section 4.4.1).

152 C H A P T E R 5 Supervised Learning

For the two-class scenario, we only need to compare Pr(c =−1|d) against Pr(c =
1|d), or equivalently, log Pr(c =−1|d) against log Pr(c = 1|d), which simplifies
to a comparison between

log Pr(c = 1)+
∑
t∈d

n(d, t) log θ1,t (5.21)

and

log Pr(c =−1)+
∑
t∈d

n(d, t) log θ−1,t

where Pr(c = . . .), called the class priors, are the fractions of training instances in
the respective classes. Simplifying (5.21), we see that NB is a linear classifier: it
makes a decision between c = 1and c =−1by thresholding the value of αNB · d+ b
for a suitable vector αNB (which depends on the parameters θc,t) and a constant b
depending on the priors. Here d is overloaded to denote the vector of n(d, t) term
counts and “·” denotes a dot-product.

One notable problem with naive Bayes classifiers is their strong bias. A
machine learning algorithm is biased if it restricts the space of possible hypotheses
from which it picks a hypothesis to fit the data, before assessing the data itself.
Although a naive Bayes classifier picks linear discriminants, it cannot pick from the
entire set of possible linear discriminants, because it fixes the policy that αNB(t),
the tth component of the discriminant, depends only on the statistics of term t
in the corpus. In Sections 5.8 and 5.9, you shall see other classifiers that do not
suffer from this form of bias.

5.6.2 Small-Degree Bayesian Networks
The naive Bayes model asserts that fixing the class label of a document imposes a
class-conditional distribution on the terms that occur in the document, but that
there are no other statistical dependencies between the terms themselves (which
is a gross approximation). This simple dependency structure can be represented
as a simple hub-and-spoke graph, shown in Figure 5.7(a). Each random variable,
including the class label and each term, is a node, and dependency edges are drawn
from c to t for each t. If we wish to represent additional dependencies between
terms, more edges have to be introduced as shown in Figure 5.7(b), creating a
Bayesian network.

A Bayesian network is a directed acyclic graph that represents dependencies
between a set of random variables and models their joint distribution. Each node

TE
AM
FL
Y

Team-Fly®

5.6 Bayesian Learners 153

clickhtml

. . .

the

c

Pr(click = 1|c = painting) = 0.02
Pr(click = 1|c = e-commerce) = 0.4
Pr(click = 1|c = physics) = 0.05

(a) (b)

Pr(c = 'painting') = 0.3
Pr(c = 'e-commerce') = 0.5
Pr(c = 'physics') = 0.02

clickhtml

. . .

the

c

Pr(click = 1|html = 1,c = painting) = ...
Pr(click = 1|html = 1,c = e-commerce) = ...
Pr(click = 1|html = 1,c = physics) = ...

Pr(click = 1|html = 0,c = painting) = ...
Pr(click = 1|html = 0,c = e-commerce) = ...
Pr(click = 1|html = 0,c = physics) = ...

F I G U R E 5 . 7 Bayesian networks. For the naive Bayes assumption, the only edges are from the class
variable to individual terms (a). Toward better approximations to the joint distribution over terms,
the probability of a term occurring may now depend on observations about other terms as well as
the class variable (b).

in the graph represents a random variable. The set of nodes that are connected by
directed edges to a node X are called the parents of X , denoted Pa(X). A specific
set of values for these parents is denoted pa(X). Fixing the values of the parent
variables completely determines the conditional distribution of X in the sense
that information about any other variable would not affect this distribution. For
discrete variables, the distribution data for X can be stored in the obvious way as
a table with each row showing a set of values of the parents, the value of X , and
a conditional probability.

Unlike in the naive models expressed by Equations (5.14) and (5.15), Pr(d|c)
is not a simple product over all terms. Instead it is expressed as a product of
conditional probabilities:

Pr(x)=
∏

x

Pr(x|pa(X)) (5.22)

154 C H A P T E R 5 Supervised Learning

1: Compute mutual information MI(Xt, C) between class labels C and each
feature Xt

2: For each pair of distinct variables Xi and Xj, calculate MI(Xi, Xj|C)

3: Initialize the network with class node C
4: while all Xt has not been added to the network do
5: Find Xj with maximum MI(Xj, C)

6: Add Xj to the network
7: Add directed edge (C, Xj)

8: while in-degree of Xj is less than k + 1 and there is an Xi not connected
to Xj do

9: Find an Xi with highest MI(Xi, Xj|C)

10: Add directed edge (Xi, Xj)

11: end while
12: end while

F I G U R E 5 . 8 Inducing limited-dependence Bayesian networks.

Using Bayesian networks for text classification addresses the clearly crude
approximations made by naive Bayes classifiers regarding term independence.

Given the graph structure of the network and training data, it is in principle
simple to derive the probability tables. What is difficult is to derive the structure
itself, especially if the number of nodes is large. One way to limit the complexity
is to limit the number of parents that each node can have. In our context of text
classification, a k-dependence Bayesian network has one node for the class variable
C and a node Xt for each term t. There is a directed edge from C to each Xt. In
addition, each Xt is permitted to have up to k incident edges from other Xt′s.

Figure 5.8 shows the pseudocode for constructing such a limited-degree
Bayesian network. Generally speaking, the difficult part is to get a good network
structure. For a specified network, estimating the parameters is relatively straight-
forward. To enumerate all pairs of features, the algorithm takes at least quadratic
time, which makes it difficult to apply this algorithm to large text corpora unless
some preelimination of features is performed.

We only know of Bayesian networks designed for the binary document model;
the size of the conditional probability tables (see Figure 5.7) can be prohibitive
for the multinomial model. While accuracy improvements for structured machine
learning data sets (from the U.C. Irvine repository) have been clearly visible, they
are surprisingly mild for text data (Reuters). There is room to suspect that the test

5.7 Exploiting Hierarchy among Topics 155

problems were too simple, and Bayesian network induction will shine in the face
of more complex data sets, where it is harder to discriminate between the classes.

5.7 Exploiting Hierarchy among Topics
In standard classification problems that arise in the structured data scenario, such
as data warehouses, the class labels form a discrete set. For example, credit card
transactions may be classified as “normal” or “fraudulent.” Sometimes there is a
mild ordering between the class labels, such as high, medium, or low cancer-
risk patients. In contrast, for text classification, the class labels themselves are
related by a large and complex class hierarchy, sometimes called a taxonomy
(although the term “taxonomy” is sometimes reserved for single-word or concept
interrelationships). In this section, we will restrict ourselves to hierarchies that are
trees. Tree-structured hierarchies are widely used in directory browsing, provide
an intuitive interface for representing refinements and generalizations, and are
often the output of clustering algorithms. The usual semantics of tree-structured
hierarchies is inheritance: if class c0 is the parent of class c1, any training document
that belongs to c1 also belongs to c0.

5.7.1 Feature Selection
An important issue that needs to be revisited is feature selection. The discrimi-
nating ability of a term is obviously influenced by the set of training documents
involved, and therefore the ability should also be quite sensitive to the node (or
class) in the hierarchy at which it is evaluated. Note that the measure of dis-
crimination of a term can be evaluated with respect only to internal nodes of the
hierarchy. To cite a simple example, the (ambiguous) word “can” may be a noisy
word at the root node of Yahoo!, but may be a great help in classifying documents
under the subtree of /Science/Environment/Recycling. (In this particular example,
a part-of-speech analysis might have helped, but that is not true in general.)

5.7.2 Enhanced Parameter Estimation
The “uniform prior assumption” made in Section 5.6.1 is unrealistic. For example,
in the binary model, the minimum loss parameter value would be φ = 1

2 for all
terms in the absence of data, whereas experience with languages tells us that words
are rare and differ greatly in how rare they are. I also introduced one technique
toward better smoothing by exploiting document-length distributions.

