
c h a p t e r 4
S I M I L A R I T Y A N D C L U S T E R I N G

Keyword query processing and response ranking, described in Chapter 3, depend
on computing a measure of similarity between the query and documents in the
collection. Although the query is regarded at par with the documents in the
vector-space model, it is usually much shorter and prone to ambiguity (the average
Web query is only two to three words long). For example, the query star is
highly ambiguous, retrieving documents about astronomy, plants and animals,
popular media and sports figures, and American patriotic songs. Their vector-
space similarity (see Chapter 3) to the single-word query may carry no hint that
documents pertaining to these topics are highly dissimilar. However, if the search
clusters the responses along the lines of these topics, as shown in Figure 4.1, the
user can quickly disambiguate the query or drill down into a specific topic.

Apart from visualization of search results, clustering is useful for taxonomy
design and similarity search. Topic taxonomies such as Yahoo! and the Open
Directory (dmoz.org/) are constructed manually, but this process can be greatly
facilitated by a preliminary clustering of large samples of Web documents. Clus-
tering can also assist fast similarity search, described in Section 3.3.1. Given a
precomputed clustering of the corpus, the search for documents similar to a query
document dq may be efficiently limited to a small number of clusters that are most
similar to dq, quickly eliminating a large number of documents that we can safely
surmise would rank poorly.

Similarity, in a rather general way, is fundamental to many search and mining
operations on hypertext and is central to most of this book. In this chapter we will
study how measures of similarity are used to cluster a collection of documents into

79

80 C H A P T E R 4 Similarity and Clustering

Cluster 1 Size: 8 key army war francis spangle banner air song scott word poem british

Star-Spangled Banner, The
Key, Francis Scott
Fort McHenry
Arnold, Henry Harley
National Anthem

Cluster 2 Size: 68 film play career win television role record award york popular stage p

Burstyn, Ellen
Stanwyck, Barbara
Berle, Milton
Zukor, Adolph
Bankhead, Tallulah

Cluster 3 Size: 97 bright magnitude cluster constellation line type contain period spectr

star
Galaxy, The
extragalactic systems
interstellar matter
cluster star

Cluster 4 Size: 67 astronomer observatory astronomy position measure celestial telescop

astronomy and astrophysics
astrometry
Agena
astronomical catalogs and atlases
Herschel, Sir William

Cluster 5 Size: 10 family species flower animal arm plant shape leaf brittle tube foot hor

blazing star
brittle star
bishop's cap
feather star

F I G U R E 4 . 1 Scatter/Gather, a text clustering system, can separate salient topics in response to
keyword queries. (Image courtesy of Hearst [101].)

groups within which interdocument similarity is large compared to the similarity
between documents chosen from different groups. The utility of clustering for
text and hypertext information retrieval lies in the so-called cluster hypothesis: given
a “suitable” clustering of a collection, if the user is interested in document d, she
is likely to be interested in other members of the cluster to which d belongs.

The cluster hypothesis is not limited to documents alone. If documents are
similar because they share terms, terms can also be represented as bit-vectors
representing the documents in which they occur, and these bit-vectors can be
used to cluster the terms. As with terms and documents, we can set up a bipartite

4.1 Formulations and Approaches 81

relation for people liking documents, and use this to cluster both people and
documents, with the premise that similar people like similar documents, and vice
versa. This important ramification of clustering is called collaborative filtering.

This chapter is organized as follows: I start with an overview of basic formu-
lations and approaches to clustering (Section 4.1). Then I describe two impor-
tant clustering paradigms: a bottom-up agglomerative technique (Section 4.2.1),
which collects similar documents into larger and larger groups, and a top-down
partitioning technique (Section 4.2.2), which divides a corpus into topic-oriented
partitions. These are followed by a slew of clustering techniques that can be
broadly classified as embeddings of the corpus in a low-dimensional space so as to
bring out the clustering present in the data (Section 4.3). Next, I discuss proba-
bilistic models and algorithms in Section 4.4, and end the chapter with a discussion
of collaborative filtering.

4.1 Formulations and Approaches
Formulations of clustering problems range from combinatorial to fuzzy, and no
single objective serves all applications. Most of the combinatorial definitions are
intractable to optimize. Clustering is a classic applied art where a great deal of
experience with data must supplement stock algorithms. It is beyond the scope
of a single chapter to cover the entire breadth of the subject, but there are many
classic books on it. My goal is to highlight broad classes of algorithms and the
specific issues that arise when one seeks to find structure in text and hypertext
domains.

I first propose a few formal specifications of the clustering problem and outline
some basic approaches to clustering. We are given a collection D of documents
(in general, entities to be clustered). Entities either may be characterized by some
internal property, such as the vector-space model for documents, or they may be
characterized only externally, via a measure of distance (dissimilarity) δ(d1, d2) or
resemblance (similarity) ρ(d1, d2) specified between any two pairs of documents.
For example, we can use the Euclidean distance between length-normalized
document vectors for δ and cosine similarity for ρ. These measures have been
discussed earlier, in Chapter 3.

4.1.1 Partitioning Approaches
One possible goal that we can set up for a clustering algorithm is to partition
the document collection into k subsets or clusters D1, . . . , Dk so as to minimize

82 C H A P T E R 4 Similarity and Clustering

the intracluster distance
∑

i
∑

d1,d2∈Di
δ(d1, d2) or maximize the intracluster re-

semblance
∑

i
∑

d1,d2∈Di
ρ(d1, d2). If an internal representation of documents is

available, then it is also usual to specify a representation of clusters with regard
to that same model. For example, if documents are represented using the vector-
space model, a cluster of documents may be represented by the centroid (average)
of the document vectors. When a cluster representation is available, a modified
goal could be to partition D into D1, . . . , Dk so as to minimize

∑
i
∑

d∈Di
δ(d, �Di)

or maximize
∑

i
∑

d∈Di
ρ(d, �Di), where �Di is the vector-space representation of

cluster i.
One could think of assigning document d to cluster i as setting a Boolean

variable zd,i to 1. This can be generalized to fuzzy or soft clustering where zd,i is
a real number between zero and one. In such a scenario, one may wish to find
zd,i so as to minimize

∑
i
∑

d∈D zd,iδ(d, �Di) or maximize
∑

i
∑

d∈D zd,iρ(d, �Di).
Partitions can be found in two ways. We can start with each document in a

group of its own, and collapse together groups of documents until the number
of partitions is suitable; this is called bottom-up clustering. Alternatively, we can
declare the number of partitions that we want a priori, and assign documents
to partitions; this is called top-down clustering. I will discuss both variants in
Section 4.2.

4.1.2 Geometric Embedding Approaches
The human eye is impressive at noticing patterns and clusters in data presented
as points embedded in two or three dimensions, as borne out by the naming of
constellations and archipelagoes. If there is natural clustering in the data, and we
manage to embed or project the data points to two or three dimensions without
losing the clustering property, the resulting “map” may itself be an adequate
clustering aid.

I will discuss several approaches to creating clusters in low-dimensional space.
In one approach, called self-organizing maps, clusters are laid out on a plane in a
regular grid, and documents are iteratively assigned to regions of the plane. For
this approach we need documents to be specified using an internal description. In
another approach, called multidimensional scaling, the system input is the pairwise
(dis-)similarity between documents. The algorithm seeks to embed the docu-
ments as points in 2D to 3D space with the minimum distortion of pairwise
distances. Both of these approaches are heuristic in nature; there is no general
guarantee that all collections can be rendered well. Another technique, called

TE
AM
FL
Y

Team-Fly®

4.1 Formulations and Approaches 83

latent semantic indexing, uses techniques from linear algebra to factor the term-
document matrix. The factors can be used to derive a low-dimensional represen-
tation for documents as well as terms. This representation can also be used for ad
hoc searching.

A different form of partition-based clustering is to identify dense regions in
space. As an extreme example, we can start with a 1D space with a finite extent
and a finite number of points, and claim that a cluster is demarcated by endpoints
within which the number of points per unit length (density) is higher than (some
multiple of) the average global density. Such a density-based notion of clustering
can be readily extended to more dimensions. In particular, there may be no
discernible clustering when the points are considered in the original space, but
clusters may emerge when the points are projected to a subspace with a smaller
number of dimensions. We can look for density-based clusters in a simple bottom-
up fashion. The basic observation is that if a region is dense in k dimensions, then
all projections of this region are dense. Therefore, the algorithm first finds 1D
dense “regions,” tries to compose them into 2D regions, discarding those that fail
the density test, and so on. Unfortunately this method would not scale to textual
data with tens of thousands of dimensions. The only way around seems to be to
propose simple generative distributions for documents, discussed next.

4.1.3 Generative Models and Probabil istic Approaches
In the approaches outlined thus far, the measures of (dis-)similarity are provided by
the user. Carelessly designed measures can easily damage the quality of clustering.
The probabilistic approach seeks to model the document collection as being
generated by a random process following a specific set of distributions. For
example, we can assume that each cluster that we seek is associated with a
distribution over the terms in our lexicon. Given the collection, we must estimate
the number of distributions, and the parameters defining these distributions.
Indeed, estimating these distributions can be defined as the clustering problem. We
will study several techniques for estimating cluster distributions. Initially we will
assume that each document is generated from exactly one distribution. However,
in the common situation that clusters correspond to topics, a single-topic-per-
document model is not entirely realistic: documents are often mixtures of multiple
topics. The more advanced techniques that we will study can estimate models in
this more general setting. (This part of the chapter is key to understanding many
later chapters.)

84 C H A P T E R 4 Similarity and Clustering

Estimating a term distribution over documents is difficult. There is little hope
of capturing the joint distribution between terms or term sequences, given the
large number of terms in the vocabulary (tens to hundreds of thousands for many
standard collections). Most practical models need to assume that term occurrences
are independent of each other. Even if each term is associated with a simple
Boolean event (the term occurs or does not occur in a document), the number
of event combinations is astronomical compared to the size of any document
collection that we are likely to encounter.

4.2 Bottom-Up and Top-Down Partitioning Paradigms
We will now study one bottom-up clustering technique that will repeatedly merge
groups of similar documents until the desired number of clusters is attained, and
a top-down technique that will iteratively refine the assignment of documents to
a preset number of clusters. The former method is somewhat slower, but may be
used on a small sample of the corpus to “seed” the initial clusters before the latter
algorithm takes over.

4.2.1 Agglomerative Clustering
Although many formulations of the clustering problem are intractable, a simple,
intuitive heuristic is to start with all the documents and successively combine
them into groups within which interdocument similarity is high, collapsing
down to as many groups as desired. This style is called bottom-up, agglomerative,
or hierarchical agglomerative clustering (HAC) and is characterized by the broad
pseudocode shown in Figure 4.2. HAC is widely used in document clustering
and other IR applications [180, 213].

1: let each document d be in a singleton group {d}
2: let G be the set of groups
3: while |G|> 1 do
4: choose �, � ∈G according to some measure of similarity s(�, �)

5: remove � and � from G
6: let �= � ∪�

7: insert � into G
8: end while

F I G U R E 4 . 2 Basic template for bottom-up hierarchical agglomerative clustering.

4.2 Bottom-Up and Top-Down Partitioning Paradigms 85

0.1

0.3

0.5

0.7

0.9

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 Documents

Si
m

ila
ri

ty

F I G U R E 4 . 3 A dendrogram presents the progressive, hierarchy-forming merging process picto-
rially. The user can cut across the dendrogram at a suitable level of similarity to get the desired
number of clusters. (Taken from [141].)

The hierarchical merging process leads to a tree called a dendrogram, drawn
in the specific style shown in Figure 4.3. Typically, the earlier mergers happen
between groups with a large similarity s(� ∪�). This value becomes lower and
lower for later merges. The user can “cut across” the dendrogram at a suitable
level to “read off” any desired number of clusters.

Algorithms differ as to how they compute the figure of merit for merging
� and �. One commonly used measure is the self-similarity of � ∪�. The self-
similarity of a group of documents � is defined as the average pairwise similarity
between documents in �

s(�)= 1(|�|
2

) ∑
d1,d2∈�

s(d1, d2)= 2

|�| (|�| − 1)

∑
d1,d2∈�

s(d1, d2) (4.1)

where the TFIDF cosine measure is commonly used for interdocument similarity
s(d1, d2). Other merger criteria exist. One may choose to merge that pair of
clusters (�, �), which maximizes mind1∈�,d2∈� s(d1, d2), maxd1∈�,d2∈� s(d1, d2),
or (

∑
d1∈�,d2∈� s(d1, d2))/(|�| |�|).

In this section, we will denote a document as d and its corresponding vector-
space representation as �d, which we will sometimes simplify to d if there is no

86 C H A P T E R 4 Similarity and Clustering

chance for confusion. If documents are already normalized to unit length in the
L2 norm, s(d1, d2) is simply the dot-product, 〈d1, d2〉.

By maintaining carefully chosen statistics, the dendrogram can be computed
in about quadratic time and space. For any group � of documents, we maintain
an unnormalized group profile vector

p(�)=
∑
d∈�
�d (4.2)

which is simply the sum of the document vectors belonging to that group, together
with the number of documents in the group. It is easy to verify that

s(�)= 〈p(�), p(�)〉 − |�|
|�|(|�| − 1)

(4.3)

and

p(� ∪�)= 〈p(�), p(�)〉 + 〈p(�), p(�)〉 + 2 〈p(�), p(�)〉 (4.4)

Thus, in Figure 4.2, to compute s(� ∪�) from p(�) and p(�) will cost just the
time to do a few dot-products. For the moment we will assume that dimensionality
of documents and group profiles are fixed, and therefore we can calculate a dot-
product in constant time. (We will return to this issue.) Not much changes on
each merge, so we would also like to maintain with each group � a heap [56]
of partner groups � ordered by largest s(� ∪�). Thus, for each group, we can
access its best partner (together with the score) in constant time. With n groups to
start with, we precompute all pairwise similarities in O(n2) time, and insert them
in heaps in O(n2 log n) time. Now we can pick the best pair of groups to merge in
O(n) time, delete these groups from each of the heaps in O(log n) time, compute
the similarity of the merger with old groups in O(n) time, and update all heaps
in O(n log n) time. Since there are n − 1 merges, the total time is O(n2 log n),
and all the heaps together consume O(n2) space.

Earlier we assumed that documents and group profile vectors are embedded
in a space with a fixed number of dimensions. This is true, but the number of
dimensions is rather large, running into tens of thousands. Moreover, the time
taken to compute a dot-product is not really proportional to the number of
dimensions, but only the number of nonzero coordinates, assuming a sparse vector
representation is used (as it should be). For example, the Reuters collection [139]
has about 22,000 financial news articles, a typical article having a few dozen to
a few hundred distinct terms, whereas the total number of unique terms in the

4.2 Bottom-Up and Top-Down Partitioning Paradigms 87

collection is over 30,000. As a result, dot-product computations near the leaves
of the dendrogram would be very fast, but would get slower as the group profiles
become denser, until near the root, profile vectors are almost entirely dense. A
simple way to reduce the running time is to truncate document and group profile
vectors to a fixed number (e.g., 1000) of the largest magnitude coordinates. In
theory, this may lead to a clustering output that is different from what would
be computed with a full representation, but empirical evidence suggests that the
quality of clustering remains unaffected [60, 191].

4.2.2 The k -Means Algorithm
Bottom-up clustering, used directly, takes quadratic time and space and is not
practical for large document collections. If the user can preset a (small) number k
of desired clusters, a more efficient top-down partitioning strategy may be used.
The best-known member of this family of algorithms is the k-means algorithm.
We will discuss two forms of the k-means algorithm here. One makes “hard”
(0/1) assignments of documents to clusters. The other makes “soft” assignments,
meaning documents belong to clusters with a fractional score between 0 and 1.

k -means with “hard” assignment

In its common form, k-means uses internal representations for both the objects
being clustered and the clusters themselves. For documents, the vector-space
representation is used, and the cluster is represented as the centroid of the
documents belonging to that cluster.

The initial configuration is arbitrary (or chosen by a heuristic external to the
k-means algorithm), consisting of a grouping of the documents into k groups,
and k corresponding vector-space centroids computed accordingly. Thereafter,
the algorithm proceeds in alternating half-steps, as shown in Figure 4.4.

The basic step in k-means is also called move-to-nearest, for obvious reasons.
A variety of criteria may be used for terminating the loop. One may exit when
the assignment of documents to clusters ceases to change (much), or when cluster
centroids move by negligible distances in successive iterations.

k -means with “soft’ assignment

Rather than make any specific assignment of documents to clusters, the “soft”
variant of k-means represents each cluster c using a vector µc in term space. Since
there is no explicit assignment of documents to clusters, µc is not directly related to
documents—for example, it is not necessarily the centroid of some documents.

88 C H A P T E R 4 Similarity and Clustering

1: initialize cluster centroids to arbitrary vectors
2: while further improvement is possible do
3: for each document d do
4: find the cluster c whose centroid is most similar to d
5: assign d to this cluster c
6: end for
7: for each cluster c do
8: recompute the centroid of cluster c based on documents assigned to it
9: end for

10: end while

F I G U R E 4 . 4 The k-means algorithm.

The goal of “soft” k-means is to find a µc for each c so as to minimize the
quantization error,

∑
d minc |d − µc|2.

A simple strategy to iteratively reduce the error is to bring the mean vectors
closer to the documents that they are closest to. We scan repeatedly through the
documents, and for each document d, accumulate a “correction” �µc for that
µc that is closest to d:

�µc =
∑

d

{
η(d − µc), if µc is closest to d
0 otherwise

(4.5)

After scanning once through all documents, all the µcs are updated in a batch by
setting all µc←µc +�µc. η is called the learning rate. It maintains some memory
of the past and stabilizes the system. Note that each d moves only one µc in each
batch.

The contribution from d need not be limited to only that µc that is closest to
it. The contribution can be shared among many clusters, the portion for cluster
c being directly related to the current similarity between µc and d. For example,
we can soften (4.5) to

�µc = η
1/|d − µc|2∑
γ 1/|d − µγ |2

(d − µc)

or

�µc = η
exp(−|d − µc|2)∑
γ exp(−|d − µγ |2)

(d − µc) (4.6)

4.3 Clustering and Visualization via Embeddings 89

Many other update rules, similar in spirit, are possible. Soft assignment does not
break close ties to make documents contribute to a single cluster that wins
narrowly. It is easy to show that some variants of soft k-means are special cases of
the EM algorithm (see Section 4.4.2), which can be proved to converge to local
optima.

Running time

In both variants of k-means, for each round, n documents have to be compared
against k centroids, which will take O(kn) time. The number of rounds is usually
not too strongly dependent on n or k, and may be regarded as fixed.

Bottom-up clustering is often used to “seed” the k-means procedure. If k
clusters are sought, the strategy is to randomly select O(

√
kn) documents from

the collection of n documents and subject them to bottom-up clustering until
there are k groups left. This will take O(kn log n) time. Once this step is over, the
centroids of the k clusters, together with the remaining points, are used to seed a
k-means procedure, which takes O(kn) time. The total time over the two phases
is thus O(kn log n).

4.3 Clustering and Visualization via Embeddings
Visualization of results from IR systems is a key driving force behind clustering
algorithms. Of the two clustering techniques we have studied so far, HAC lends
itself more readily to visualization, because trees and hierarchies are ubiquitous
as user interfaces. Although k-means collects documents into clusters, it has no
mechanism to represent the clusters visually, in a small number of dimensions.

In this section we will study a few clustering approaches that directly represent
the documents as points in a given number of dimensions (two to three if
direct visualization is desired). We start with Kohonen or self-organizing maps
(SOMs), a close cousin of k-means. Next, we study multidimensional scaling
(MDS), which gives an explicit optimization objective: we wish to minimize the
error or distortion of interpoint distances in the low-dimensional embedding
as compared to the dissimilarity given in the input data. This is a satisfying
formulation, but usually intractable to exact optimization. The third category of
techniques uses linear transformations to reduce the number of dimensions, and
some of these approximately but provably preserve important properties related
to interdocument similarity.

90 C H A P T E R 4 Similarity and Clustering

In all these cases, the ability to reduce the data to points in a 2D or 3D space
that can be visualized directly is very valuable. The human eye is great at detecting
clusters in low dimensions, and techniques that transform the data to such a format
without losing important similarity information from the original data are very
useful for analyzing text collections.

4.3.1 Self-Organizing Maps (SOMs)
Self-organizing, or Kohonen, maps are a close cousin to k-means, except that
unlike k-means, which is concerned only with determining the association
between clusters and documents, the SOM algorithm also embeds the clusters
in a low-dimensional space right from the beginning and proceeds in a way that
places related clusters close together in that space.

As in “soft” k-means, the SOM is built by associating a representative vector
µc with each cluster c, and iteratively refining these representative vectors. Unlike
k-means, each cluster is also represented as a point in a low-dimensional space.
Clusters might be represented by nodes in a triangular or square grid, for example.
Figure 4.5 shows a triangular grid. A large number of clusters can be initialized
even if many regions are to remain devoid of documents in the end. In Figure 4.5,
the background intensity shows the local density of documents assigned to each
grid point. By extracting frequent words and phrases from the documents assigned
to each cluster, we can “name” regions of the map as shown in Figure 4.5.

Based on the low-dimensional embedding, a neighborhood N (c) is defined for
each cluster c; for the square grid, N (c) might be chosen as all nodes within two
hops of c. We also design a proximity function h(γ , c), which tells us how close a
node γ is to the node c. h(c, c)= 1, and h decays with distance (e.g., the number
of links on the shortest path connecting γ and c in the grid). In fact, we don’t
really need N (c); we can simply let h(γ , c) be 0 for γ �∈N (c).

The update rule for an SOM will be generalized straight from Equation (4.5)
by adding one new feature: if document d matches cluster cd best, the update
contribution from d should apply not only to cd but to all γ ∈ N (cd) as well.
SOMs are a kind of neural network where data item d “activates” the neuron
cd and some other closely neighboring neurons. The overall algorithm initializes
all µ to random vectors and repeatedly picks a random document d from the
collection and updates the model at each neuron until the model vectors stop
changing significantly. The update rule for node γ under the influence of d is
thus written as

µγ ← µγ + ηh(γ , cd)(d − µγ) (4.7)

4.3 Clustering and Visualization via Embeddings 91

F I G U R E 4 . 5 SOM computed from over a million documents taken from 80 Usenet news groups.
Light areas have a high density of documents. The region shown is near groups pc.chips and
pc.video, and closer inspection shows a number of URLs in this region that are about PC
videocards.

Here, as before, η is a learning rate, which may be folded into h. An example of
an SOM of over a million documents from 80 Usenet news groups is shown in
Figure 4.5, together with the result of drilling down into the collection. Another
example involving Web documents is shown in Figure 4.6, where the regions
chalked out by SOM are in broad agreement with the human catalogers working
on the Open Directory Project (http://dmoz.org/). The topic names in Figure 4.6
were generated manually once the correspondence with named DMoz.org topics
was clear.

4.3.2 Multidimensional Scaling (MDS) and FastMap
In the case of k-means and SOM, documents have a specified internal represen-
tation, namely, the vector-space representation. In other applications, documents
may be characterized only by a distance to other documents. Even in cases where
an internal representation is available, one may use it for generating pairwise dis-
tances. Doing this may help in incorporating coarse-grained user feedback in
clustering, such as “documents i and j are quite dissimilar” or “document i is
more similar to j than k.” These can be translated into a distance measure that

92 C H A P T E R 4 Similarity and Clustering

(b)(a)

F I G U R E 4 . 6 Another example of SOM at work: the sites listed in the Open Directory Project
have been organized within a map of Antarctica, at antarcti.ca/ (a). Clicking on a region maintains
context (inset) and zooms in on more specific topics (b). Documents are located at the cluster to
which they are most similar.

overrides that computed from internal representations as the user provides more
feedback.

The goal of MDS is to represent documents as points in a low-dimensional
space (often 2D to 3D) such that the Euclidean distance between any pair of points
is as close as possible to the distance between them specified by the input. Let
di,j be a (symmetric) user-defined measure of distance or dissimilarity between
documents i and j, and let d̂i,j be the Euclidean distance between the point
representations of documents i and j picked by our MDS algorithm. The stress of
the embedding is given by

stress=
∑

i,j(d̂i,j − di,j)
2∑

i,j d2
i,j

(4.8)

We would like to minimize the stress.
This formulation is very appealing but is not easy to optimize. Iterative stress

relaxation, that is, hill climbing, is the most used strategy to minimize the stress.
Here I shall talk about documents and points interchangeably. Initially, all points
are assigned coordinates randomly or by some external heuristic. Then, each point
in turn is moved by a small distance in a direction that locally reduces its stress.

With n points to start with, this procedure involves O(n) distance computa-
tions for moving each point, and so O(n2) distance computations per relaxation

TE
AM
FL
Y

Team-Fly®

4.3 Clustering and Visualization via Embeddings 93

step. A much faster approach called FastMap, due to Faloutsos and Lin [76],
pretends that the original documents are indeed points in some unknown high-
dimensional space, and finds a projection to a space with a smaller number k of
dimensions. The heart of the FastMap algorithm is to find a carefully selected line
onto which the points are projected to obtain their first dimension, then project
the points to a hyperplane perpendicular to the line, and recursively find the re-
maining k− 1 coordinates. There are thus three key subproblems: (1) how to find
a good direction or line, (2) how to “project” the original points onto the line
(given that we have no internal representation of the documents), and (3) how to
project the points to the hyperplane.

Because there is no internal representation available, the only way in which a
direction or line can be specified is via a pair of points. Let a and b be two points
defining the line, called the pivots. We can arbitrarily let a be the origin. Consider
another point x for which we wish to compute the first coordinate x1. Using the
cosine law, we get

d2
b,x = d2

a,x + d2
a,b − 2x1da,b

⇒ x1=
d2

a,x + d2
a,b − d2

b,x

2 da,b
(4.9)

This 1D projection does preserve some distance information: all points x close to
a will have small x1 and hence be close to each other in the projected space, and
vice versa. This also gives a clue to finding a good line: informally, a line is good
if projecting onto it helps spread out the points, that is, the point set has high
variance in the direction of the line. This is difficult to ensure without exhaustive
checking, so Faloutsos and Lin pick pivots that are far apart as a heuristic.

The next step is to project all points to the hyperplane perpendicular to the
pivot line. Again, this “projection” cannot give us an internal representation of
the original points, because we have not started with any. The only purpose of
the “projection” is to correct interpoint distances by taking into account the
component already accounted for by the first pivot line. Consider points x and y
with distance dx,y, first coordinates x1 and y1, and projections x′, y′ (with unknown
internal properties) on the hyperplane. By the Pythagorean theorem, it is easy to
see that the new distance d′ on the hyperplane is

d′x′,y′ =
√

d2
x,y − (x1− y1)

2 (4.10)

94 C H A P T E R 4 Similarity and Clustering

x

(a) (b)

x1
da,b

db,xda,x

b

a

b

x

d2
x,y – (x1 – y1)2

|x1 – y1|
90˚

y

a

dx,y

√

F I G U R E 4 . 7 FastMap: projecting onto the pivot line (a), and projecting to a subspace with one
less dimension (b).

At this point, we have derived the first dimension of all points and reduced
the problem to one exactly like the original problem, except k − 1 additional
dimensions remain to be computed. Therefore, we can simply call the routine
recursively, until we go down to 1D space where the problem is trivially solved.
The end product is a vector (x1, . . . , xk) for each point x in the original data set. It
can be verified that FastMap runs in O(nk) time. For visualization tasks, k is usually
a small constant. Therefore, FastMap is effectively linear in the size of the point set.
Figure 4.8 shows a fly-through 2D rendering of a 3D embedding of documents
returned by a search engine in response to the query “tony bennett,” which are
clearly separated into two clusters. Closer inspection shows those clusters are about
“country” and “jazz” music.

4.3.3 Projections and Subspaces
In many of the clustering algorithms we have discussed so far, including HAC
and k-means style clustering, a significant fraction of the running time is spent
in computing (dis-)similarities between documents and clusters. The time taken
for one similarity calculation is proportional to the total number of nonzero
components of the two vectors involved. One simple technique to speed up
HAC or k-means is to truncate the document vectors to retain only some of the
largest components. (We can retain either a fixed number of components or the
smallest number of components that make up, say, at least 90% of the original
vector’s norm.) Truncation was introduced earlier, in Section 4.2.1; it has been

4.3 Clustering and Visualization via Embeddings 95

Country

Jazz

F I G U R E 4 . 8 FastMap in action: clustering documents about country and jazz music.

experimentally evaluated by Schutze and Silverstein [191]. For the clustering task,
it turns out that cutting down from tens of thousands to barely 50 dimensions has
no significant negative impact on the quality of clusters generated by a clustering
algorithm. Truncation to 50 axes per vector was comparable even to a more
sophisticated global projection algorithm, discussed in Section 4.3.4.

One problem with orthogonal subspace projection is that one does not know
if 50 or 100 coordinates are enough except by judging the outcome of clustering.
Certain non-orthogonal projections have provable guarantees that the distortion
that they force on inter-document distances are mild [168, 9]. Specifically, for any
0 < ε > 1 and any integer n > 0, choose any

k ≥ 4

ε2/2− ε3/3
ln n.

Then for any set V of n vectors in R
d, there is a map f : Rd→ R

k, computable
in randomized polynomial time, such that for all pairs �x, �y ∈ V ,

(1− ε)||�x − �y||2 ≤ ||f (�x)− f (�y)||2 ≤ (1+ ε)||�x − �y||2.
While this represents a powerful theoretical property, the mapping f involves

random rotations in the original space, which may destroy sparseness: docu-
ment vectors which were very sparse in the original space may be mapped to
dense vectors by f , reducing the performance gain from the apparently simpler

96 C H A P T E R 4 Similarity and Clustering

1: select, say, k3 documents out of n uniformly at random
2: use HAC or move-to-nearest to cluster these to k2 clusters
3: note the k2 centroid vectors
4: for each document d, find the projection of �d onto each of the centroid vectors
5: use this vector of k2 real numbers as a representaton of d
6: with the new k2-dimensional representation of all d, run a conventional

clustering algorithm

F I G U R E 4 . 9 Data-sensitive random projections.

representation. For example, with ε = 1/2 and n= 100000, which could be quite
typical in an application, we need k ≥ 32 ln 100000≈ 368. If the average docu-
ment has fewer than 368 terms, projection may not really simplify our document
representation and therefore may not speed up clustering substantially. An ef-
fective heuristic to retain sparsity (at the cost of losing the theoretical distortion
guarantee) is shown in Figure 4.9.

Hopefully, if the average document density is more than k2, the second-round
clustering will be much faster because of the speedup in distance computation.
Note that this transformation is not linear. The intuition is that a uniform random
selection will pick more documents from dense regions and few from unpopulated
ones, with the result that fewer directions for projections will be needed to keep
the clusters apart.

4.3.4 Latent Semantic Indexing (LSI)
Projections to orthogonal subspaces, that is, a subset of dimensions, may not
reveal clustering structure in the best possible way. For example, the clusters may
be formed by multiple correlated attributes. In this section I will characterize
attribute redundancy more systematically in terms of linear algebraic operations
on the term-document matrix.

Let the term-document matrix be A where the entry A[t, d] may be a 0/1
value denoting the occurrence or otherwise of term t in document d. More
commonly, documents are transformed into TFIDF vectors and each column of
A is a document vector.

In the vector-space model, we allocated a distinct orthogonal direction
for each token. The obvious intuition is that there is no need for so many
(tens of thousands) of orthogonal directions because there are all sorts of latent
relationships between the corresponding tokens. Car and automobile are likely to
occur in similar documents, as are cows and sheep. Thus, documents as points in

4.3 Clustering and Visualization via Embeddings 97

this space are not likely to nearly “use up” all possible regions, but are likely to
occupy semantically meaningful subspaces of it. Another way of saying this is that
A has a much lower rank than min{|D|, |T |}. (See the standard text by Golub and
van Loan [91] for definitions of rank and matrix factoring and decomposition.)

One way to reveal the rank of A is to compute its singular value decomposition
(SVD). Without going into the details of how the SVD is computed, which is
standard, I will write down the decomposed form of A as

A|T |×|D| = U|T |×r

 σ1 · · · 0

...
. . .

...
0 · · · σr

 V T

r×|D| (4.11)

where r is the rank of A, U and V are column-orthonormal (UTU =V TV = I,
the identity matrix), and the diagonal matrix � in the middle can be organized
(by modifying U and V) such that σ1≥ . . .≥ σr > 0.

The standard cosine measure of similarity between documents can be applied
to the A matrix: the entries of (ATA)|D|×|D| may be interpreted as the pairwise
document similarities in vector space. The situation is completely symmetric with
regard to terms, and we can regard the entries of (AAT)|T |×|T | as the pairwise
term, similarity based on their co-occurrence in documents. (In Chapter 7, I will
return to defining similarity using such matrix products, where the matrices will
be node adjacency matrices of hyperlink graphs.)

The tth row of A may therefore be regarded as a |D|-dimensional represen-
tation of term t, just as the dth column of A is the |T |-dimensional vector-space
representation of document d. Because A has redundancy revealed by the SVD op-
eration, we can now use a “better” way to compute document-to-document sim-
ilarities as (V �2V T)|D|×|D| and term-to-term similarities as (U�2UT)|T |×|T |.
In other words, the tth row of U is a refined representation of term t, and the dth
row of V is a refined representation of document d. Interestingly, both represen-
tations are vectors in an r-dimensional subspace, and we can therefore talk about
the similarity of a term with a document in this subspace.

In latent semantic indexing (LSI), the corpus is first used to precompute the
matrices U , �, and V . A query is regarded as a document. When a query
“q” is submitted, it is first projected to the r-dimensional “LSI space” using the
transformation

q̂=�−1
r×rU

T
r×|T |q|T | (4.12)

98 C H A P T E R 4 Similarity and Clustering

At this point q̂ becomes comparable with the r-dimensional document repre-
sentations in LSI space. Now one can look for document vectors close to the
transformed query vector.

In LSI implementations, not all r singular values are retained. A smaller
number k, roughly 200 to 300, of the top singular values are retained—that is, A
is approximated as

Ak =
∑

1≤i≤k

�uiσi�vT
i (4.13)

where �ui and �vi are the ith columns of U and V . How good an approximation is
Ak? The Frobenius norm of A is given by

|A|F =
√∑

t,d

A[t, d]2 (4.14)

It can be shown that

|A|2F = σ 2
1 + · · · + σ 2

r , (4.15)

and

min
rank(B)=k

|A− B|2F = |A− Ak|2F = σ 2
k+1+ · · · + σ 2

r (4.16)

That is, Ak is the best rank-k approximation to A under the Frobenius norm.
The above results may explain why retrieval based on LSI may be close to

vector-space quality, despite reduced space and perhaps query time requirements
(although the preprocessing involved is quite time-consuming). Interestingly,
in practice, LSI does better, in terms of recall/precision, than TFIDF retrieval.
Heuristic explanations may be sought in signal-processing practice, where SVD
has been used for decades, with the experience that the dominating singular values
capture the “signal” in A, leaving the smaller singular values to account for the
“noise.” In IR terms, LSI maps synonymous and related words to similar vectors,
potentially bridging the “syntax gap” in traditional IR and thus improving recall.
Although a complete discussion is outside our scope here, LSI may also be able
to exploit correlations between terms to resolve polysemy in some situations,
improving precision as well.

More rigorous theories seeking to explain the improved accuracy of LSI have
been proposed by Papadimitriou et al. [170] and by Azar et al. [9]. Papadimitriou
et al. assume that documents are generated from a set of topics with disjoint

4.4 Probabilistic Approaches to Clustering 99

vocabularies, and after the resulting low-rank block matrix A is slightly perturbed,
LSI can recover the block structure and hence the topic information. Azar et al.
generalized this result to the case where A is not necessarily close to a block matrix
but is approximated well by some low-rank matrix.

Thus far, we have discussed LSI/SVD as a device for dimensionality reduction,
noise filtering, and ad hoc retrieval. But it can also be used for visualization
(choose k = 2 or 3) or clustering, by using any of the other algorithms in this
chapter after applying SVD. An example of a 2D embedding via LSI is shown in
Figure 4.10. LSI can run in minutes to hours on corpora in the rough range of
103 to 104 documents, but is not very practical at the scale of the Web. At the
time of this writing, I know of no public-domain SVD package that can work
efficiently without storing the whole input matrix in memory. This can lead to
an unacceptable memory footprint for a large collection.

4.4 Probabil istic Approaches to Clustering
Although the vector-space representation has been very successful for ad hoc re-
trieval, using it for clustering leaves a few unresolved issues. Consider HAC as
discussed in Section 4.2.1. The document and group profile vectors were deter-
mined by a single IDF computation before the agglomerative process. Perhaps
it makes more sense to compute IDF with regard to � ∪�, not the entire cor-
pus, when evaluating the self-similarity of � ∪�. However, such a policy would
interfere with the optimizations I have described.

Given a corpus with various salient topics, documents are likely to include
terms highly indicative of one or relatively few topics, together with noise terms
selected from a common set. A major function of IDF is to downplay noise-words,
but we may get the same effect by identifying that a document is composed of these
separate distributions, and attribute similarity only to overlap in terms generated
from distributions other than the noise distribution. Continuing on this line of
thought, documents assigned to some node c in a topic taxonomy such as Yahoo!
may be thought of as picking up vocabulary from distributions associated with
nodes on the path from the root up to c, inclusive. Note that the notion of a
noise-word becomes context-dependent in the hierarchical setting: the word can,
used largely as a verb, has low information content at the root node of Yahoo!,
but in the subtree rooted at /Environment/Recycling, can is used mostly as a noun
and should not be attributed to the noise distribution.

100 C H A P T E R 4 Similarity and Clustering

A Course on Integral Equations
Attractors for Semigroups and Evolution Equations
Automatic Differentiation of Algorithms: Theory, Implementation, and Application
Geometrical Aspects of Partial Differential Equations
Ideals, Varieties, and Algorithms –An Introduction to Computational Algebraic
Geometry and Commutative Algebra
Introduction to Hamiltonian Dynamical Systems and the N-Body Problem
Knapsack Problems: Algorithms and Computer Implementations
Methods of Solving Singular Systems of Ordinary Differential Equations
Nonlinear Systems
Ordinary Differential Equations
Oscillation Theory for Neutral Differential Equations with Delay
Oscillation Theory of Delay Differential Equations
Pseudodifferential Operators and Nonlinear Partial Differential Equations
Sync Methods for Quadrature and Differential Equations
Stability of Stochastic Differential Equations with Respect to Semi-Martingales
The Boundary Integral Approach to Static and Dynamic Contact Problems
The Double Mellin-Barnes Type Integrals and Their Applications to Convolution Theory

B1
B2
B3
B4
B5

B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17

Titles

(a)

Label

F I G U R E 4 . 1 0 Subtopics are clearly separated by LSI in this collection of mathematical abstracts (a).
The query “application theory” and a cone around it is shown shaded on page 101 (b). (Image
courtesy Berry et al. [15].)

In this section, we are interested in proposing and validating generative models
of documents that move away from the paradigm of assigning importance to terms,
or defining similarity or distance measures, by fiat. Instead, we propose random
processes that generate documents, and characterize clustering as discovering the
random processes and associated parameters that are (most) likely to have generated
a given collection of documents. Several desirable ramifications will follow:

� There will be no need for IDF to determine the importance of a term.
� Some of the models we will study can directly and naturally capture the notion

of stopwords vs. content-bearing words.
� There is no need to define distances or similarities between entities.
� Assignment of entities to clusters need not be “hard”; it is probabilistic.

4.4 Probabilistic Approaches to Clustering 101

0.0 0.2 0.4

(b)

0.6 0.8 1.0

0.1

0.2

-0.2

-0.5

Algorithms

Application

Delay

Differential
Equations

Implementation

Integral

Introduction

Methods

Nonlinear

Ordinary

Oscillation

Partial

Problem

Systems

Theory

B1
B2

B3

B4

B5

B6

B7

B8

B9

B10

B11
B12

B13

B14
B15

B16

B17

Query

F I G U R E 4 . 1 0 (continued)

4.4.1 Generative Distributions for Documents
Statistical pattern recognition and IR algorithms are built on the premise that the
patterns (documents, images, audio) that we observe are generated by random
processes that follow specific distributions. The observations let us estimate various

102 C H A P T E R 4 Similarity and Clustering

parameters pertaining to those distributions, which in turn let us design strategies
for analyzing the patterns, by way of clustering, indexing, or classification.

This may sound clean and appealing, but proposing credible distributions that
can generate natural language is very difficult. Even if some limited success can be
achieved in this quest, the computation involved is usually heavy-duty. We must
be content to model only a few aspects of the observed data, hoping that they
will suffice for the application at hand.

The aspects that are almost always axed by the need for simplicity and ef-
ficiency are dependencies and ordering between terms. To appreciate why depen-
dencies are difficult to capture, consider the Reuters collection [139], which has
about 22,000 news articles, using over 30,000 unique tokens. Even if each at-
tribute (axis) in the vector space had just two possible values (0/1), there would
be 230,000≈ 1010,000 possible documents. Clustering is intimately tied to estimat-
ing the density of the distribution being sampled, so the chances of finding a
decent estimate in a space this size with only 22,000 documents is out of the
question.

In a bid to reduce the severity of the problem, we can make the drastic
assumption that term occurrences are independent events. To start with, let us
make the further assumption that term counts are unimportant, that is, the event
associated with a term and a document is a 0/1 random variable. This is called
the multivariate binary model, or the binary model for short. A document event is
just a bit-vector with a 0/1 slot for each term in the vocabulary W, and the bit
corresponding to a term t is flipped on with probability φt, and off with probability
1− φt. All the φts are collected into the parameter set for this model, called �.
Given �, the probability of generating document d is given by

Pr(d|�)=
∏
t∈d

φc,t

∏
t∈W ,t �∈d

(1− φc,t) (4.17)

Since typically |W | � |d|, short documents are discouraged by this model. Also,
the second product makes strong independence assumptions and is likely to greatly
underestimate Pr(d|�) for many not-so-unlikely documents. On the other hand,
assuming all φt > 0 and φt < 1, all the 2|W | possible documents, some of them
essentially impossible in real life, have positive probability. Thus, this model
smooths out the probability over too large a space, depriving the more likely
regions.

In our second attempt, we will model term counts. The modified generative
process is as follows: the writer first decides the total term count (including

TE
AM
FL
Y

Team-Fly®

4.4 Probabilistic Approaches to Clustering 103

repetitions) of the document d to be generated by drawing a random positive
integer L from a suitable distribution Pr(�); suppose the instantiated event is
�d. Next, the writer gets a die: it has |W | faces, one face for each term in
the vocabulary. When tossed, the face corresponding to term t comes up with
probability θt (

∑
t θt = 1). We represent by 	 all parameters needed to capture

the length distribution and all θts. The author tosses this die �d times and writes
down the terms that come up. Suppose term t turns up n(d, t) times, with∑

τ n(d, τ) = �d. The document event in this case comprises �d and the set of
counts {n(d, t)}. The probability of this compound event is given by

Pr(�d, {n(d, t)}|)= Pr(L = �d|) Pr({n(d, t)}|�d,)

= Pr(L = �d|)

(
�d

{n(d, t)}
) ∏

t∈d

θn(d,t)
t

(4.18)

where
(�d{n(d,t)}

)= �d!
n(d,t1)! n(d,t2)!··· is the multinomial coefficient. We will abbreviate

the compound event on the lhs by Pr(d|). This is called the multinomial model.
The length distribution is vital; without it, the empty document would have
probability 1.

The multinomial model does not fix the term-independence assumption. In
fact, it assumes that occurrences of a given term are also independent of each other,
which is another assumption that is clearly wrong. Reading a document from left
to right, if you see the word Pentium five times, you are not really surprised to see
it a sixth time, unlike what the additional factor of θt in Equation (4.18) suggests.
Even so, the multinomial model, in preserving term count information, turns out
to be somewhat superior for most text mining tasks.

From a linguist’s perspective, such models are insufferably crude: there is not a
shade of grammar or semantic sense in these characterizations; there is not even a
hint of the strong short-range dependence that is commonly seen between terms.
(For example, the word spite is quite likely to follow the word in and precede the
word of .) We offer no defense, but note that these models are approximations
to physical reality, make parameter estimation tractable, and produce acceptable
experimental results for machine learning tasks in the text domain.

4.4.2 Mixture Models and Expectation Maximization (EM)
The notion of generative distributions makes it easy and elegant to express the
clustering problem, perhaps a little more elegantly than the formulations in
Section 4.1. Consider a given collection of documents, for example, a set of

104 C H A P T E R 4 Similarity and Clustering

pages crawled from the Web. It is possible to estimate 	Web for this collection,
and then calculate the probability Pr(d|	Web) of all Web documents d with regard
to 	Web. But we may not really believe that a single multinomial model suffices
for the whole Web. Suppose a set of topics, such as arts, science, and politics,
were given to us ahead of time, and we can identify which topic a document
talks about. (Until Section 4.4.3 we will assume that a document is about exactly
one topic.) We can estimate, in lieu of a single 	Web, specialized parameter sets
	arts, 	science, 	politics, and so on, and for a document belonging to a topic y,
evaluate Pr(d|	y). Intuitively, we would expect this to be generally much larger
than Pr(d|	Web), because 	y may correctly capture that some terms are rare or
frequent in documents about topic y, compared to a random document from the
Web at large.

The preceding discussion reveals the essence of the clustering problem and
leads us to the following mixture model for document generation. Suppose there are
m topics (also called components or clusters). The author of a page has to first decide
what topic he wishes to write about. This may be done using a multinomial m-
way selector distribution with probabilities α1, . . . , αm, where α1+ · · · + αm = 1.
Once a topic y is decided upon, the author uses 	y, the distribution for that topic,
to generate the document. For example, we can use the binary or the multinomial
distribution for each component. We can even use different distributions for
different components.

In preparation for the rest of this section, I will simplify the notation. For
each component y, there are many parameters θy,t, one for each term t. I collect
all these parameters, all the αis, as well as the number of clusters m, into a global
parameter space. I reuse 	 to name this parameter space:

	= (m; α1, . . . , αm; {θy,t ∀y, t})
It is conventional to denote the data points as x rather than d, which I will follow
for the rest of this section. Lastly, I will illustrate the EM algorithm not with the
multinomial component distribution but with a simple distribution characterized
by just one parameter per component: the Poisson distribution with mean µ

characterized by Pr(X = x) = e−µµx/x!, for x = 0, 1, 2, Accordingly, we
will have m parameters µ1, . . . , µm, and our simplified parameter space will be

	= (m; α1, . . . , αm; µ1, . . . , µm)

4.4 Probabilistic Approaches to Clustering 105

With the setup as described so far, we see that

Pr(x|)=
m∑

j=1

αj Pr(x|µj) (4.19)

Note that x is multivariate in general—certainly for text—although for the Poisson
distribution, it is just a real number.

For the clustering task, we are given n independent, identically distributed
(iid.) observations X = {x1, . . . , xn}, and we need to estimate 	—that is, we
would like to find 	 so as to maximize

Pr(X |)=
n∏

i=1

Pr(xi|) �= L(|X) (4.20)

and thus

log L(|X)=
∑

i

log

∑

j

αj Pr(xi|µj)

 (4.21)

For the moment we will assume that m is provided as an input. Our estimation
of 	 will therefore concern the α and µ parameters.

If the component yi (1≤ yi ≤ m) from which each observation xi has been
generated were known, this would be a trivial problem. The challenge is that
Y = {yi} is a set of hidden random variables. The component distributions define
the clusters, and Y indicates the cluster to which each data point belongs.

Since Y is unknown, it must be modeled as a random variable, and we can
assign data points to clusters only in a probabilistic sense. The classic approach to
solving the problem is to maximize L (see Equation (4.21)) explicitly with regard
to both X and Y : L(|X , Y)= Pr(X , Y |). Since we do not know Y , we must
take the expectation of L over Y . Unfortunately, estimating the distribution of Y
requires knowledge of 	. To break the cycle, we start with a suitable guess 	g.
Let the “complete data likelihood” be

106 C H A P T E R 4 Similarity and Clustering

Q(, 	g)= EY
(
log L(|X , Y)

∣∣X , 	g) (4.22)

=
∑

Y

{Pr(Y |X , 	g)}{log Pr(X , Y |)} (4.23)

=
∑

Y

{Pr(Y |X , 	g)}{log(Pr(Y |) Pr(X |Y ,))} (4.24)

=
m∑

y1=1

· · ·
m∑

yn=1

{
n∏

j=1

Pr(yj|xj, 	
g)

} {
n∑

i=1

log(αyi
Pr(xi|µyi

))

}
(4.25)

The last expression can be simplified to

Q(, 	g)=
m∑

�=1

n∑
i=1

Pr(�|xi, 	
g) log

(
α� Pr(xi|µ�)

)
(4.26)

Because Q is an expectation over Y , this step is called the expectation, or E, step.
How should we pick a refined value of 	? It seems reasonable to choose

the next estimate of 	 so as to maximize Q(, 	g). This step is called the
maximization, or M , step. There is one constraint to the maximization, namely,∑

i αi = 1, and we perform a standard Lagrangian optimization:

∂

∂αk

[
m∑

�=1

n∑
i=1

{log αi + · · ·} Pr(�|xi, 	g)− λ
∑

i

αi

]
= 0 (4.27)

which yields

αk = 1

λ

n∑
i=1

Pr(k|xi, 	
g) (4.28)

From the constraint we can now show that λ= n.
We must also find the new values of µi, i = 1, . . . , m. For concreteness I

have picked a specific one-parameter distribution, a Poisson distribution with
mean µi for the ith component. (It is not necessary for all components to follow
the same distribution for the algorithm to work.) The Poisson distribution is
characterized as Pr(x|µ)= e−µµx/x! for integer x= 0, 1, 2,Thus, our second
set of derivatives is

∂

∂µk

[
m∑

�=1

n∑
i=1

Pr(�|xi, 	
g)

(−µ� + xi log µ�

)]= 0 (4.29)

4.4 Probabilistic Approaches to Clustering 107

which yields

n∑
i=1

(
−1+ xi

µk

)
Pr(k|xi, 	

g)= 0 (4.30)

Simplifying,

µk =
∑n

i=1 xi Pr(k|xi, 	
g)∑n

i=1 Pr(k|xi, 	g)
(4.31)

The complete algorithm, called expectation maximization (EM), is shown in
Figure 4.11. It can be shown that the maximization step guarantees that L()

never decreases, and must therefore reach a local maximum.
In general, finding a suitable value of m is a nontrivial task. For some appli-

cations, m may be known, and in addition, for some documents i, yi (the cluster
to which that document belongs) may also be specified. A common example
would be the assignment of Web documents to Yahoo!-like clusters, where a few
documents have been manually assigned to clusters but most documents are not
assigned. This is an instance of a semisupervised learning problem, which we will
study in Chapter 6. Completely supervised learning or classification is the topic
of Chapter 5. There the classifier is given a fixed set of labels or classes and sample
documents with each class.

When m is not specified, there are two broad techniques to estimate it.
The first is to hold out some of the data, build the mixture model on the rest,
then find the likelihood of the held-out data given the mixture parameters. This
process is repeated while increasing the number of clusters until the likelihood
ceases to increase. (Note that this would not work without the held-out data; if
training data were used, the system would prefer an inordinately large value of
m, a phenomenon called overfitting, discussed in Section 5.5.) This approach has
been proposed by Smyth [197].

1: Initialize 	(0), i = 0
2: while L(|X , Y) can be increased do
3: Estimate �α(i+1) using (4.28)
4: Estimate �µ(i+1) using (4.31)
5: i← i + 1
6: end while

F I G U R E 4 . 1 1 The EM algorithm.

108 C H A P T E R 4 Similarity and Clustering

A different approach is to constrain the model complexity using a prior
distribution over the model parameters that makes complex models unlikely (see
Sections 4.4.5 and 5.6.1 for more details on prior distributions). This is the
approach adopted in the well-known AutoClass clustering package by Cheeseman
and others [47].

A criticism of the standard mixture model as applied to text is that many
documents are relevant to multiple topics. In fact, the term mixture model may
be misleading in this context, because after a generating distribution is selected
probabilistically, a data point is generated from only one distribution after all.
Operationally, this means that each distribution has to “compete on its own”
with other distributions for a share of α, that is, they cannot collude to generate
documents. In the next two sections, I will discuss two approaches to address this
limitation.

4.4.3 Multiple Cause Mixture Model (MCMM)
If a document is (partially or wholly) about a topic, the topic causes certain words
to become more likely to appear in the document. Let c be the topics or clusters
and t be terms. Let γc,t (0 ≤ γc,t ≤ 1) denote a normalized measure (not to be
interpreted as a probability) of causation of t by c. Suppose the extent to which
topic c is “activated” in writing a given document d is ad,c (0≤ ad,c ≤ 1). Then
the belief that term t will appear in the document d is given by a soft disjunction,
also called a noisy OR:

bd,t = 1−
∏

c

(1− ad,c γc,t), (4.32)

That is, the term does not appear only if it is not activated by any of the classes
under consideration. Let the document d be represented by the binary model
where n(d, t), the number of times term t appears in it, is either zero or one.
Then the goodness of the beliefs in various term activations is defined as a log
likelihood:

g(d)= log

∏

t∈d

bd,t

∏
t �∈d

(1− bd,t)

=
∑

t

log
(
n(d, t) bd,t + (1− n(d, t))(1− bd,t)

)
(4.33)

For a document collection {d} the aggregate goodness is
∑

d g(d).

4.4 Probabilistic Approaches to Clustering 109

Like other iterative clustering algorithms, we somehow set a number of
clusters, and the iterations proceed in pairs of half-steps. In each iteration, the first
half-step fixes γc,t and improves on the choice of ad,c. The second half-step fixes
ad,t and improves on the choice of γc,t. In both half-steps, the search for improved
parameter values is done by local hill climbing, that is, finding ∂

∑
d g(d)/∂ad,c

or ∂
∑

d g(d)/∂γc,t and taking a short step along the gradient.
MCMMs can be used in a supervised learning setting, too (see Chapter 5);

in that case, the activations ad,c are provided for documents d in the training set,
and the system needs to estimate only the coupling matrix γc,t. When given a
new document q, the coupling matrix is kept fixed and aq,c estimated so as to
maximize g(q). This information can be used to tag documents with labels from
a predefined set of labels with examples that have been used to train or supervise
the system.

MCMMs are thus a very flexible and simple model, useful for both unsuper-
vised and supervised learning. Their only drawback is speed. The representation
of the coupling matrix is dense, and hill climbing is slow. With a few hundred
terms, a thousand documents, and about 10 clusters, supervised runs take a few
minutes and unsupervised runs take a few hours on stock hardware. For larger
document collections with tens of thousands of terms, aggressive elimination of
terms (see Section 5.5) is required.

4.4.4 Aspect Models and Probabil istic LSI
Hofmann has proposed a new generative model for multitopic documents [109,
110]. We start with the raw term counts in a given document collection, in
the form of a matrix in which entry n(d, t) denotes the frequency of term t
in document d. Put another way, each pair (d, t) has a binary event associated
with it. The number of times this event occurs is the observed data n(d, t). Note
the subtle distinction between this model and the multinomial model discussed
in Section 4.4.1. In the multinomial model, given a document length, the
frequencies of individual terms apportion this quota of total count. Here the total
event count over all (d, t) is set in advance, and the (d, t) events must apportion
this total count. This means that the corpus must be fixed in advance and that
analyzing a new document from outside the corpus takes some special steps, unlike
the multinomial model.

When an author starts composing a document, she induces a probability
distribution Pr(c) over topics or clusters. For example, she may set a probability
of 0.3 for writing (using terms) about politics and 0.7 for petroleum. Different

110 C H A P T E R 4 Similarity and Clustering

clusters cause event (d, t) with different probabilities. To find the overall Pr(d, t),
we condition and sum over clusters:

Pr(d, t)=
∑

c

Pr(c) Pr(d, t|c) (4.34)

The main approximation in the aspect model is to assume conditional indepen-
dence between d and t given c, which gives us

Pr(d, t)=
∑

c

Pr(c) Pr(d|c) Pr(t|c) (4.35)

The important parameters of this characterization are Pr(c), Pr(d|c), and
Pr(t|c). An EM-like procedure can be used to estimate these parameters, together
with the E-step parameter Pr(c|d, t), which may be interpreted as a grade of
evidence that event (d, t) was caused by cluster c.

Pr(c|d, t)= Pr(c, d, t)

Pr(d, t)

= Pr(c) Pr(d, t|c)∑
γ Pr(γ , d, t)

= Pr(c) Pr(d|c) Pr(t|c)∑
γ Pr(γ) Pr(d|γ) Pr(t|γ)

(4.36)

Pr(c)=
∑

d,t n(d, t) Pr(c|d, t)∑
γ

∑
d,t n(d, t) Pr(γ |d, t)

(4.37)

Pr(d|c)=
∑

t n(d, t) Pr(c|d, t)∑
δ

∑
t n(δ, t) Pr(c|δ, t)

(4.38)

Pr(t|c)=
∑

d n(d, t) Pr(c|d, t)∑
τ

∑
d n(d, τ) Pr(c|d, τ)

(4.39)

As in EM, the user has to fix the number of clusters ahead of time or
use validation with a held-out set. Hofmann also describes an enhanced EM
procedure. The number of clusters is akin to the number of singular values retained
in the LSI (SVD) decomposition discussed in Section 4.3.4; we may use held-out
data for cross-validation to determine a suitable number of clusters.

The factor model can be used as a probabilistic version of LSI, dubbed
probabilistic LSI, or PLSI . A text collection is first subjected to the PLSI analysis

4.4 Probabilistic Approaches to Clustering 111

and the four sets of parameters estimated as specified. Now for each document d
and each cluster c, we precompute

Pr(c|d)= Pr(c) Pr(d|c)∑
γ Pr(γ) Pr(d|γ)

(4.40)

where all the quantities on the right-hand side are estimated parameters. A query
q (regarded as a bag of words, like documents) has to be folded into the system.
The precalculated parameters are frozen, and new parameters Pr(c|q, t) for all c, t,
Pr(q|c) for all c are estimated as

Pr(c|q, t)= Pr(c)Pr(q|c) Pr(t|c)∑
γ Pr(γ)Pr(q|γ) Pr(t|γ)

(4.41)

Pr(q|c)=
∑

t n(q, t)Pr(c|q, t)∑
t n(q, t)Pr(c|q, t)+∑

d
∑

t n(d, t) Pr(c|d, t)
(4.42)

This is itself an iterative procedure with the coupling shown by the underlined
variables.

Once Pr(c|q) and Pr(c|d) are known for all d, one may use the vector of
posterior class probabilities as a surrogate representation, just as the projection
via U or V T is used in LSI. That is, the similarity between q and d may be
defined in a number of reasonable ways, for example,

∑
c Pr(c|q) Pr(c|d), or∑

c Pr(c) Pr(d|c) Pr(q|c), for both of which the similarity-finding operations
remains a dot-product of vectors.

PLSI has been evaluated using four standard IR collections: MED (1033 ab-
stracts from medical journals), CRAN (1400 documents on aeronautics), CACM
(3204 abstracts from a computer science periodical), and CISI (1460 abstracts
related to library science). As shown in Figure 4.12, PLSI compares favorably
in terms of recall precision with standard TFIDF cosine-based ranking. The
vector-space ranking used in comparison is a simple one-shot process. The best
vector-space–based contenders today use two enhancements. First, it is a two-
shot process: some number of top-ranking results are assumed to be relevant,
and a second query is generated including certain words from those top-ranking
documents; the final response set is the result of this second query. Second, the
TFIDF weights are adjusted to reflect diverse document lengths; this may lead to
favorable scoring of documents that match a query in only a few local regions.

112 C H A P T E R 4 Similarity and Clustering

MED

Pr
ec

isi
on

 (
%

)

CRAN CACM CISI

0
0 50

Recall (%)
100

10

20

30

40

50

60

70

80

90

cos
LSI
PLSI*

0

10

20

30

40

50

60

70

0 50
Recall (%)

100

cos
LSI
PLSI*

0

10

20

30

40

50

60

0 50
Recall (%)

100

cos
LSI
PLSI*

0

5

10

15

20

25

30

35

40

45

50

0 50
Recall (%)

100

cos
LSI
PLSI*

F I G U R E 4 . 1 2 PLSI shows a significant improvement beyond standard one-shot TFIDF vector-
space retrieval as well as standard LSI for several well-known data sets.

It would be interesting to compare PLSI with the length-adjusted, two-round
variants of TFIDF search engines.

4.4.5 Model and Feature Selection
Clustering is also called unsupervised learning because topic-based clusters emerge
as a result of the learning process, and are not specified ahead of time. As we
have seen, (dis-)similarity measures are central to many forms of unsupervised
learning. With a large number of dimensions where many dimensions are noisy
and correlated, the similarity measure gets distorted rather easily. For example,
noise-words or stopwords are integral to any language. A precompiled list of
stopwords, or even a corpus-dependent IDF weighting, may fail to capture
semantic emptiness in certain terms. Failing to eliminate or play down these

TE
AM
FL
Y

Team-Fly®

4.4 Probabilistic Approaches to Clustering 113

dimensions sufficiently results in all similarity scores being inflated by some
random, noisy amount. In bottom-up clustering, this noise often manifests itself
in unbalanced, stringy dendrograms—once a cluster becomes large, there is no
stopping it from gathering more mass.

A possible approach is to launch a search for a subset of terms that appears to
be “noisy” in the sense that the clusters found all share a common distribution
over these terms, together with per-cluster distribution over useful “signal” terms.
Let D be the set of documents and DT , DN , and DS be the representation
of documents in the entire term space T , a noisy subset of term N , and the
complement signal space S = T \N . Using standard independence assumptions,
we can approximate

Pr(DT |)= Pr(DN |) Pr(DS|) (4.43)

=
∏
d∈D

Pr(dN |	N) Pr(dS|	S)

=
∏
d∈D

Pr(dN |	N) Pr(dS|	S
c(d)

) (4.44)

where 	S is composed of per-cluster parameters 	S
c for a set of clusters {c}, c(d) is

the cluster to which d belongs, and dN (respectively, dS) are documents projected
to the noise (respectively, signal) attributes.

If |T | ranges into tens of thousands, it can be daunting to partition it every
way into N and S. An obvious technique is to cluster the terms in T according
to their occurrence in documents, the process being called distributional clustering.
(One can use the U matrix in LSI for doing this, for instance.) The hope is to
collect the term set into a manageable number of groups, each of which is then
tested for membership or otherwise in S as a whole.

MCMM and PLSI may achieve the same effect via a slightly different route.
In MCMM, we can designate one cluster node to take care of the noise terms, and
we can do likewise with one factor in PLSI. We can seed these clusters suitably
(with, say, known stopwords) so that they gravitate toward becoming a generator
of noise terms. It would be interesting to compare how well MCMM and PLSI
achieve signal and noise separation compared to the feature subset search approach.

There is another useful way to look at the search for S and N in Equation
(4.43): we would like to maximize Pr(DT |), while at the same time share the
cost of the parameters for the N subspace over all clusters—there is only one set

114 C H A P T E R 4 Similarity and Clustering

of parameters 	N , whereas the 	S is diversified over each cluster. In other words,
we wish to factor out 	N from all the clusters. Why is this desirable?

The medieval English philosopher and Franciscan monk William of Ockham
(c. 1285–1349) proposed that “plurality should not be posited without necessity”
(“pluralitas non est ponenda sine neccesitate”). This utterance has since been called
Occam’s razor , the principle of parsimony, and the principle of simplicity, and it has had
profound influence on statistical analysis of noisy data.

In data analysis, Occam’s razor would favor the simplest model that “explains”
the data as well as any other. More formally, if under some assumptions about the
space of generative models, two models generate the data with equal probability,
then we should prefer the simpler model. This is not merely a normative stand.
As we shall see in Chapter 5, picking simple models helps us generalize what we
have learned from limited samples to yet-unseen data. If we do not control the
complexity of the models we accept, we are in danger of learning chance artifacts
from our sample data, a phenomenon called overfitting.

The Minimum Description Length (MDL) principle [182] is a ramification
of Occam’s razor that helps us control model complexity. MDL expresses the
goodness of fit of models to data by composing a cost measure that has two
components: model cost and data cost. The model cost is the number of bits L()

needed to express an efficient encoding of the model 	. The data cost L(x|)

is the number of bits needed to express the data x with regard to a specified
model (not necessarily a mixture model). Shannon’s classic work on information
and coding theory [57] lets us approximate L(x|)≈− log Pr(x|), the entropy
lower bound, in most cases. Clustering thus amounts to finding

	∗ = arg min
	
{L()+ L(x|)}

= arg	 min
{
L()− log Pr(x|)

} (4.45)

L() is the coding cost for the model and its parameters. The coding
cost of parameters that take values from finite, discrete sets is easily determined
by assuming a prior distribution over the parameters. For example, we may
assume a prior distribution for m, the number of components in a mixture
model (see Section 4.4.2) of the form Pr(M = m) = 2−m for m ≥ 1. Now we
can use Shannon’s theorem again to encode the parameter with regard to the
prior distribution with a cost close to the entropy of the prior distribution. For
continuous-valued parameters, some form of discretization is needed. A complete
description of continuous parameter spaces is beyond this book’s scope.

